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Abstract
From many datasets gathered in online social networks, well defined community
structures have been observed. A large number of users participate in these networks
and the size of the resulting graphs poses computational challenges. There is a
particular demand in identifying the nodes responsible for information flow between
communities; for example, in temporal Twitter networks edges between
communities play a key role in propagating spikes of activity when the connectivity
between communities is sparse and few edges exist between different clusters of
nodes. The new algorithm proposed here is aimed at revealing these key connections
by measuring a node’s vicinity to nodes of another community. We look at the nodes
which have edges in more than one community and the locality of nodes around
them which influence the information received and broadcasted to them. The
method relies on independent random walks of a chosen fixed number of steps,
originating from nodes with edges in more than one community. For the large
networks that we have in mind, existing measures such as betweenness centrality are
difficult to compute, even with recent methods that approximate the large number
of operations required. We therefore design an algorithm that scales up to the
demand of current big data requirements and has the ability to harness parallel
processing capabilities. The new algorithm is illustrated on synthetic data, where
results can be judged carefully, and also on a real, large scale Twitter activity data,
where new insights can be gained.
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1 Introduction
Online social networks (OSNs) such as Facebook, LinkedIn and Twitter have inspired a
great amount of research. Whether it is regarding their uses [] in different aspects of our
daily lives or on how a important scientific breakthrough can spread around the world
[]. These networks can be very large, for example Facebook currently holds around  bil-
lion user accounts. Despite the obvious computational challenges, analysis of these large
datasets provides the opportunity to test hypothesis about human social behavior on an
unprecedented scale, and hence to reveal deeper understandings of human social behavior
[]. Furthermore, commercial, government and charitable enterprises can utilize the net-
works to inform campaigning, advertising and promotion. Hence, there is great potential
impact for improvements in the analytical tools designed for analysing social networks.
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Within the OSNs generated by users, community structures form naturally, and research
into their detection is very active [, ]. These developments in community detection have
produced a diverse set of methods which are at our disposal. Run times of the algorithms
are a major concern, and current datasets can be too large for many of the algorithms
available. One approach to deal with the size is by using network samples; for example,
[] analyzes community structure in a subset of millions of nodes taken from Facebook.
However, for the types of effects that span over the entirety of the networks, we wish to
avoid sampling and deal with complete networks.

Communities in OSNs can emerge for many reasons. A key driver can be homophily
[], where some underlying similarity between users in a community leads to a higher
number of edges between these users than with users in a different community. [] in-
vestigates homophily formation and evolution in a online social buyers setting. Here, a
community builds trust and supports the activity of online purchases, which is the mo-
tivation for more in depth research into the nature of the inter-community connections.
Companies have an interest in their brand identity within OSN communities, as users
now have the ability to broadcast brand information to many other users within their so-
cial reach. Although not based on data from OSNs, [] discusses the attributes that users
exhibit to utilize their business associations, and how companies should work to cultivate
their brand presence with customers. The authors also raise many interesting questions
concerning the dynamic elements of brand presence which are relevant to this work.

It is also interesting to elaborate on how distinct communities are brought together to
create large connected graphs. Without the connectivity between dense communities, iso-
lated components would not support many of the fascinating phenomena that have been
observed, notably the hugely influential small world effect [], where there exist surpris-
ingly short paths between members of the network located in different communities. By
definition, the density of those edges connecting communities is less than the density of
edges within communities. The sparsity of the between-community connectivity is the
basis for community separation quality measures such as the modularity index, []. The
relatively low number of these edges connecting communities together gives them special
importance as they are critical for the graph’s connectivity. A recent study explores this
network feature using examples from brain connectivity, [], concluding that connection
costs can explain these modular networks. For the applications in OSNs, where companies
seek to harness the power of Internet advertising, nodes which offer community traver-
sal connections are critical targets []. The aim of this work is therefore to give a simple
and scalable methodology for defining and discovering this type of key structural compo-
nent. For the remainder of this paper an edge connecting two different communities will
be referred to as a boundary edge and the nodes on either side of these edges as boundary
nodes.

It is important to have in mind that the edges created facilitate an information exchange
but when a node receives content, independently it decides on whether to repeat this re-
ceived information to its follower node set. In future time steps this can include nodes
that were previously not included in the sharing of this content for whatever reasons or
constraints might exist. For content to spread throughout the network this decision to
repeat the content must be consistently agreed on independently. The number of times
this must occur is increased when there is a large number of distinct communities and
only a few boundary nodes acting as regulators for the content to cross communities and
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become viral. The term viral usually assumes that a large portion of the nodes in network
are aware of a piece of information or content regardless of the specific niche community
they may belong to. Viral activity can be identified through conversation volume spikes,
or cascades, as users share a common piece of content in a short amount of time.

In general the content users would classify as news has many examples of viral spread-
ing of content. Twitter is sometimes considered to be a news source, with [] counting at
least % of Tweets being related to headline news. Much of which includes news of com-
mercial interest and opens possibilities for real time engagement. Real time monitoring of
these events being discussed is therefore essential for automated engagement. With spikes
in topics lasting in the order of minutes, the run time of an algorithm should be reduced as
much as possible and the ability of the algorithm to utilize the hardware of multiple pro-
cessors is highly desirable. The works [, ] discuss this real time monitoring of events
and gives a number of case studies, comparing techniques for spike detection. Our work
has a slightly different emphasis, since we aim to detect nodes and edges that facilitate
propagation of information, and hence would be natural candidates for monitoring and
intervention.

To introduce notation and background, we consider a graph G = (V , E), with N = |V |
number of nodes and M = |E| as the number of edges. The standard centrality measure
most relevant to our work is betweenness (shortest path betweenness), []. For a node v,
this measure is defined as

bv =
∑

i�=j �=v

σi,j(v)
σi,j

, ()

where σi,j counts the total number of shortest paths between i and j, and σi,j(v) counts
how many of these pass through node v. Hence, bv gives an indication for the amount of
potential control or influence node v has on the information flow between all other nodes
in the network. Computing this measure straightforwardly for each node requires a large
number of operations, �(N), leading to a run time that is impractical for large networks.
Using Brandes algorithm [] a complexity of �(M × N) is possible, which is still time
consuming for the networks with millions of nodes.

The strict assumption that information flows along shortest paths (geodesics) is not al-
ways appropriate, as discussed, by Newman [], who proposes a random walk between-
ness measure computed using matrix methods. An important criticism of the geodesic
viewpoint, which also motivates the random walk alternative, is that when passing mes-
sages to target nodes, typical users do not have the global network information and
hence may not be aware of the shortest paths between pairs of nodes to be able to place
them along the correct route. The runtime for this random walk betweenness measure is
�((M + N)N) and the algorithm requires matrix inversions. We also note that these two
betweenness measures above are designed for static networks, and changes in the size of
communities over time can affect the distribution of the betweenness values amongst the
nodes.

2 Methodology
Given networks arising from online social media, there are many cases where rich com-
munity structure is observed. The edges connecting these separately clustered groups
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Table 1 Outline of the boundary node vicinity algorithm

1 Extract the set of connected graphs from the original graph
2 For each connected component obtain the community labels for the graph
3 Obtain the set of boundary nodes
4 Measure the local vicinity of each boundary node using the fixed length random walk method and aggre-

gate all of the values in the graph into a normalized score

of nodes are referred to as boundary nodes here, and those edges connecting them are
boundary edges. In this section our algorithm for measuring the boundary node prox-
imity is described. The goal is to be able to rank nodes in a network according to their
ability to influence nodes across different communities by the information (content) they
exchange. This will reveal the boundary nodes, which play a key role in exchanging infor-
mation between different communities, and those nodes surrounding them in their local
vicinity. The algorithm is based on the premise that information travels via a random walk
rather than through a shortest path route.

An adjacency matrix A of dimension N will be used to represent the original network,
where Ai,j =  when there is an edge between nodes i and j. Once the network has been
decomposed into its connected subcomponents and the community labelling has been as-
signed, the set of boundary edges, connecting two nodes (i, j) belonging to different com-
munities, can then be defined as:

Wi,j =
{

(i, j) : i ∈ C, j /∈ C, i /∈ C, j ∈ C
}

. ()

Here (C, C) are two communities belonging to the list of community labels, C, in the
graph. We assume that the number of community labels will be much less than the number
of nodes, |C| � N . From the boundary edge set W, the boundary nodes B, can be found.
Due to the typical sparsity of the community connectivity, the number of boundary nodes
will be much less than the total number of nodes, |B| � N .

The algorithm proposed here iterates through the boundary node set and performs a
set of independent truncated random walkers originating at each boundary node, until
convergence is reached in the distribution of visits to the nodes in the vicinity of each
boundary node. It is the counts of the visits from the random walkers to the boundary
nodes and nodes of the same community in their vicinity which allows a ranking in terms
of being able to influence another community by spread of content. The description of the
algorithm is summarized in steps  to  of the outline given in Table . In the first step of the
algorithm the set of connected graphs is extracted from the original graph of the network,
G, using breadth first search (BFS). BFS can be performed with run time linear in terms of
the number of edges and vertices, O(N + M), and space complexity linear in terms of N .
Given that most social networks will be small-world and scale-free, the number of edges
will not grow too fast with the number of vertices. A relatively small subset of high degree
nodes are responsible for the connectivity. The degree distribution following a power law
[] means that the majority of nodes will have a small number of edges. The second step
is to label each node according to the community it belongs to and can be computed in
O(N). There is a wide selection of algorithms for obtaining the community structure, [,
]. In our work, we use the Louvain method of []. The run time of the Louvain algo-
rithm is �(N log N), and there is an efficient implementation available. Tests run with this
method report working with millions of nodes under  minutes on a standard PC. It is
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a greedy algorithm using the modularity index, [], as an optimization criteria, which
has the benefit that the number of iterations taken by the algorithm can be controlled to
some extent by examining the value of change in the index per iteration. Other algorithms
for community detection were experimented with and produced similar results in datasets
where the community separation was clear. In situations where different approaches pro-
duce different community labellings the algorithm proceeds to focus on a different set of
nodes which is likely to have a large amount of overlap. The third step extracts the set of
boundary nodes which controls the information exchange between different communities
as they are the only nodes that connect directly to nodes in a different community.

The final step in Table  runs a number of i.i.d. random walkers from each boundary
node until a convergence criterion is satisfied based on the number of visits to the nodes
in the network. The number of visits to each node is counted and is a measure of ability
to disseminate information across boundary edges and influence different communities.
Steps  and  are described in more detail in the next subsection. This algorithm can be
referred to as the boundary vicinity algorithm (BVA).

2.1 Boundary node analysis
To obtain the boundary nodes/edges of a connected graph as defined in (), we use the
vector of community labellings for the set of nodes in the network C and look for adjacent
nodes with different community labellings. With an edge list of the adjacency matrix of
the graph, L, each edge is represented as a row number and a column number in this two
column matrix. Where the two labels differ on a row in this edge list, a boundary edge has
been detected;

W =
{

C
(
L(s, )

) �= C
(
L(s, )

)}
. ()

The adjacency matrix of the community specific graph is the matrix AC(i, j), where

ACl :i,j =

⎧
⎨

⎩
, Ai,j × δ(Cl(i), Cl(j)) = ,

 otherwise.
()

Here the δ(·, ·) is the Kronecker delta where the value of one is given when both inputs are
equal. To obtain these matrices it is not a requirement to iterate through each element.
This will be clarified below. With the community adjacency matrices for each community
label AC and the boundary nodes belonging to the network B we can iterate through the
nodes of B and run the series of random walkers localized on each boundary node and
confined to each AC .

The random walks used to measure the ability for nodes to influence and affect the
boundary nodes have a fixed number of steps. For the walks to represent the localized re-
gion of these nodes, B, the walks cannot be given an excessively large length as this would
dilute the importance of nodes closer to the boundary nodes. The Barabási-Albert model
[, ] uses the mechanism of preferential attachment to reproduce the growth character-
istics of many networks. The average path length for these networks is log(N)/ log(log(N)),
where we assume that the ceiling of the value is taken. We use this value as a baseline in
deciding the number of random walk steps that must be taken before a piece of informa-
tion loses the consistency and relevance of the original content. Various other values can
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Figure 1 Boundary vicinity algorithm (BVA).

be used for the number of steps taken in the random walks. The method is not sensitive
towards this value as long as the chains do not reach the stationary distribution where the
initial state of the chain has not affected the final results, since we are interested in the
locality of nodes surrounding the initial state which is one of the boundary nodes. Alter-
natives which worked well are the average path length, and the longest path length from
the boundary node to another node in the same community.

Based on this idea, Figure  displays the pseudocode of the algorithm for measuring the
boundary node proximities. The first input is the data structure for the connectivity of the
nodes in the network. The second input is walknum, which is the number of random walk-
ers that are started from each boundary node before convergence is tested. The third input,
stepnum, is the number of steps/node traversals taken by each random walker. The vector
visitCounts holds the number of visits by random walkers which are made to each node
in the network throughout the algorithm. As a variation this vector could be made into a
sparse matrix where each row is the contribution of an i.i.d. walker, so that more informa-
tion from the walks can be found. The function call here, connected_components(G), is
to the breadth-first-search algorithm which produces a list of the elements in G which are
connected to each other. Using the identifiers of connected graph membership, a list of the
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connected components is produced, G. In the loop of the elements of G, g is a connected
network. Here the function call community(g), is to the community detection algorithm
of choice (in this work the Louvain algorithm is used). This returns the community mem-
bership labels C for the networks and modularity index Q. If the modularity index is not
larger than a certain threshold of choice, then it is considered that g has no evident com-
munity structure and therefore no boundary nodes and the loop continues to the next
connected graph component g . The boundary edges, W, can be extracted by including
only edges which connect different community labels. We obtain the adjacency matrices
for each community label by including only the nodes in each community label in a sepa-
rate adjacency matrix. For each unique node in the list of W the algorithm then proceeds
through the standard method of a set of random walks on the adjacency matrix. After the
completion of walknum number of walks, the trajectories are tested for convergence using
the potential scale reduction factor (PSRF) of []. If the set of trajectories have not con-
verged, more walkers are computed until the required amount of convergence is achieved.
Upon convergence, the values counts of visits to each node by the walkers is normalized
to remove the effects of more walks due to lack of convergence. The results are scaled ac-
cording to the relative size of the community in relation to the whole graph because of the
impact it may have on the large scale of the information flow, so that the nodes in larger
communities deliver a larger impact than small ones.

The run time of this algorithm is dominated by the community detection phase. Due to
the boundary node set being much smaller in size than the number of nodes, the loops
required to iterate through them and perform the random walks will typically cost less
than N .

Each component of the BVA algorithm, Table , can be made more efficient using paral-
lelization methods. The first step requiring breadth first search can be parallelized using
shared or distributed memory, following the works [, ], where the number of edges
visited is significantly reduced. Another approach to BFS is [] that utilizes the Nvidia
GPUs, but the authors note the memory restrictions for large graphs that take up more
than the graphics card memory of around  GB. When the number of nodes goes beyond
a few million nodes and tens of millions of edges, memory becomes a concern and the
method of [] shows that the step of acquiring the set of connected components can be
performed in log space. The community detection component can also be parallelized by
using the method of [] resulting in a completely parallelizable algorithm. The last steps
of the algorithm can naturally be parallelized by running the i.i.d. random walkers on sep-
arate processors at the same time. After they have completed their walks the trajectories
can then be monitored for convergence.

3 Results
Here the results of using the algorithm on synthetic datasets and a real dataset are shown.
One synthetic network used for testing is a set of random Erdös-Rényi (ER) graphs pro-
duced and connected together to from a connected network by choosing randomly mem-
bers to act as boundary nodes, shown in Figure . The other synthetic network is produced
from connecting independent communities graphs produced using preferential attach-
ment, shown in Figure . These synthetic datasets are used because the results of using
them are easy interpret and compare when using BVA and betweenness. The well known
Zachary Karate club dataset [] is analyzed and presented in Figure . The Enron email
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Figure 2 3 ER communities connected and analysed with BVA and betweenness. The first row of plots
show the scores given to the node IDs with the boundary vicinity algorithm and betweenness respectively.
The second row of plots is the network visualizations with the nodes scaled in size according the normalized
scores from the boundary vicinity algorithm and betweenness respectively. Subplot (e) shows the proportion
of overlap between the top ranking nodes from BVA and betweenness for different sizes of the ranking size.
Subplot (f) is a scatter plot of the BVA and betweennes values for each node.

dataset [] is also analysed utilizing the valuable semantic data associated with the nodes
to show the qualitative validity of the algorithm. Lastly two new datasets collected from
monitoring Twitter hashtags are presented where the volume of Tweets and the volume
of boundary nodes are presented against a random set.

Figure  shows the results of using the boundary vicinity algorithm (BVA) and calculat-
ing betweenness on a synthetically produced network. Three communities were generated
independently with the ER model and then a set of random nodes ( here) were selected
from these communities to be connected to a different community. These selected nodes
become the boundary nodes in the network. There are  nodes, and the three commu-
nities have ,  and  nodes with a total of  bridges between them. The chains of
random walkers used were run until the convergence diagnostic of PSRF was below ..
There are six subfigures labelled (a)-(f ), where (a) and (b) show the normalized values
from the algorithms (y-axis) given to each node in the network (x-axis). Subfigure (a) for
the boundary vicinity algorithm has a more evenly spread distribution across the nodes
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Figure 3 3 communities produced with preferential attachment connected and analysed with BVA
and betweenness. The first row of plots show the scores given to the node IDs with the boundary vicinity
algorithm and betweenness respectively. The second row of plots is the network visualizations with the
nodes scaled in size according the normalized scores from the boundary vicinity algorithm and betweenness
respectively. Subplot (e) shows the proportion of overlap between the top ranking nodes from BVA and
betweenness for different sizes of the ranking size. Subplot (f) is a scatter plot of the BVA and betweennes
values for each node.

than what betweenness produces in subfigure (b). We can see that betweenness gives al-
most absolute importance to the nodes on the boundary with little emphasis for the nodes
in the vicinity of those boundary nodes. Subfigures (c) and (d) display the networks with
the vertices scaled according to the boundary vicinity measure and betweenness respec-
tively. In (c) we can see the neighboring nodes of the boundary scaled as well. Subfigure
(e) counts the proportion of overlap in the ranking between BVA and betweenness for
an increasing number of nodes. We can see that both algorithms have almost complete
overlap in choosing the top  nodes but differ in the order for the subsequent nodes.
Subfigure (f ) shows a scatter plot of the values for all the nodes with both algorithms. We
can see how the top ranking nodes are clearly distinct from the bulk of the network and
how BVA produces a greater variance for nodes not in the boundary set. These results
are consistent with multiple runs, and alternative networks which varied the number of
bridges connecting communities and the density of edges between nodes in a community.

http://www.epjdatascience.com/content/3/1/26


Mantzaris EPJ Data Science 2014, 3:26 Page 10 of 17
http://www.epjdatascience.com/content/3/1/26

Figure 4 Using the boundary vicinity algorithm
on the Zachary Karate club dataset. Subfigure (a)
shows the network vertices scaled according to the
normalized values given by BVA. Subfigure (b) shows
the rank proportion overlap of BVA and
betweenness for a number of different rank sizes.

Subfigure (a) in Figure  shows the results of simulating an S-I epidemic on the network
of three connected ER communities. Each simulation begins where a single node is put
into the infected state and each infected node can infect the nodes in its locality of a single
edge according to the adjacency matrix. Three hundred independent simulations are run
for each different configuration of the transmission probability and the average percent-
age of the network that is infected at each iteration is shown. In the first plot the black
line shows the results where the transmission probability is uniform across all nodes, and
is . in this case. The blue and red lines show where the top ten BVA and betweenness
scoring nodes are removed/immunized from the spread of the infection. The rate of net-
work infection is reduced in both cases showing that both scores provide useful targets for
limiting spread. The second plot shows a slightly different strategy where for the blue and
red lines, instead of removing the top ten nodes based on BVA and betweenness, their
probability to move from susceptible to the infected state is . compared to the rest
of the nodes with probability .. The black line here is still the case of the uniform .
probability used across the network.

In Figure   communities are produced using the Barabási-Albert model [, ] algo-
rithm of preferential attachment and then these communities are connected by choosing
nodes uniformly from each group. There are  nodes,  communities of , , and
 nodes with a total of  bridges. When BVA is run the chains of random walkers that
begin from the boundary nodes were run until the convergence diagnostic of PSRF was
below .. The same format as with the previous figure is used. In the first row of subplots,
(a) and (b), we can see again that there is a wider distribution in the scores for the nodes
with the BVA algorithm on non-boundary nodes. In subfigures (c) and (d) we visualize the
networks with the nodes scaled according to the BVA and betweenness respectively. We
can see that the highest degree nodes which are central to the community they belong to
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Figure 5 An S-I epidemic simulated on the networks of 3 connected communities and the Zachary
Karate club. We test the ability of BVA and betweenness to prevent spread in an S-I epidemic. A single node
at random is chosen as the initial infected node and the simulation is run until all nodes in the network are
infected or there is no further spread after 100 iterations. The simulations are run 300 times and the average
percentage of the network infected at each iteration is plotted. The results for each situation are shown up to
the iteration number there was on average a increase in the network infected where the maximum permitted
was 60. In subfigure (a) the graph of Figure 2 is used for the S-I simulation. The first subplot shows the results
of the simulations using a uniform transmission probability of 0.2 in a black line, in blue the results of
removing the top 10 nodes which BVA gave the highest score to, and in red the results of removing the top
10 nodes which betweenness produced. In the second subplot in black is the results of using a uniform
transmission probability of 0.2, the blue line the results of giving only the top 10 BVA nodes a probability of
0.01 of becoming infected, and the red line where the top 10 betweenness nodes become infected with 0.01.
We can see in both plots that BVA and betweenness target nodes which assist slowing down the spread. In
subfigure (b) we see the results of the same simulations using the network of communities shown in Figure 3
produced using preferential attachment. With the case of removal both BVA and betweenness significantly
reduce the spread and restrict the ability of the spread through the whole network. In the last subplot the rate
of infecting the whole network is also significantly reduced although the simulation do not terminate as with
the situation of removal. Subfigure (c) shows the epidemic simulation using the Zachary Karate club network
presented in Figure 4 with nodes scaled according to the BVA score. The plot shows the results of giving the
top 3 BVA and betweenness scored nodes the same reduced probability of infection. The reduced rate of
infection is visible for this network as well.
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Figure 5 Continued

are scaled and highlighted in both cases. A critical difference is that the boundary nodes at
the top which receive a large score with BVA but are given minimal importance with be-
tweenness. With betweenness the role of these nodes is redundant given alternative routes
through nodes with higher degree and direct connections to many nodes in the commu-
nity. In the effort to inspire cross pollination of communities with promoted content, the
ability to saturate a user with fewer connections may be advantageous, and worth consid-
ering because they may be influenced more easily. In (e) we look at the overlap proportion
of the ranking between nodes for a number of nodes in both algorithms. We can see the
local peak of the number of overlaps for more nodes than the number of boundary nodes.
This is because the structure of the network includes nodes in the vicinity of the bound-
ary which lay on the shortest paths to other nodes in the community. In the last subfigure
we can see the scatter plot of the BVA values and betweenness. The ranking of the algo-
rithms may be more similar to each other than with the ER communities connected but
the distribution is much more narrow for betweenness in this case, highlighting the few
boundary nodes that are also core to the communities.

Subfigure (b) in Figure  shows the results of simulating an S-I epidemic on the network
of three connected ER communities. Each simulation begins where a single node is put
into the infected state and each infected node can infect the nodes in its locality of a single
edge according to the adjacency matrix. Three hundred independent simulations are run
for each different configuration of the transmission probability and the average percentage
of the network that is infected at each iteration is shown. The percentage of the infected
network is stops where simulations no longer continued infecting new nodes on average.
The maximum permitted iteration number for each simulation was set at . In the first
plot the black line shows the results where the transmission probability is uniform across
all nodes, and is . in this case. The blue and red lines show where the top ten BVA and
betweenness scoring nodes are removed/immunized from the spread of the infection. The
rate of network infection is reduced in both cases showing that both scores provide useful
targets for limiting the spread. Since the communities had a very sparse interconnectivity
the removal restricted the between community spread limiting the number of infected
nodes. The second plot shows a slightly different strategy where for the blue and red lines,
instead of removing the top ten nodes based on BVA and betweenness, their probability
to move from susceptible to the infected state is . compared to the rest of the nodes
with probability .. The black line here is still the case of the uniform . probability used
across the network. The rate of transmission is significantly reduced from the uniform case
and even more than the results on the ER graph in the first subfigure since the community
connectivity relies on few edges.
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Figure  shows the results of using BVA on the Zachary Karate club dataset. In subplot
(a) the network is visualized and the vertices are scaled according to normalized scores
given by the BVA algorithm. The central members of the communities are given large val-
ues as are the boundary nodes since they are within the vicinity of the boundary. In subfig-
ure (b) the overlap of the rankings with BVA and betweenness is shown for the number of
nodes included, and as with the previous two figures the overlap for both methods peaks
when including the top number of nodes which corresponds to the number of boundary
nodes. In Figure , subfigure (c) shows the results of simulating an S-I epidemic on this
network. The case of removal of top scoring BVA and betweenness nodes is not presented
due to the size of the network. Here only the top  scoring nodes for BVA and betweenness
are given the reduced probability of infection .. As with the simulations on the other
networks, BVA and betweenness target nodes which reduce the rate of infection.

When analyzing the Enron email dataset, a subset of the nodes are included where the
position in the company is known. BVA and betweenness scores are calculated for each
of the nodes in the network and the top ten nodes for which their roles are known are
compared. BVA selects  vice presidents,  CEO,  managers,  traders, and  employees
to be in the top ten. Betweenness selects  vice president,  managing director,  managers,
 director of trading,  traders,  secretary and  employees. The list provided by BVA
contains more company members with higher positions than by betweenness. This may
not be always the case, but it does show that the features of the network extracted by BVA
captures importance in the node placements.

Figure  shows the Twitter activity of a TV show FearneHolly which is monitored in real
time using the paid Twitter API service that does not deliver such a limited subset of the
Tweets being sent regarding the hashtag, as does the free service. We look at the Tweet
volumes over time for this topic and plot them in the bottom subplot of the figure. We
can see a single dominating conversation intensity spike. We wish to see the activity of the
boundary node set, W, according to the large conversation volumes. BVA focuses on the
boundary nodes since it supposes that they are key in facilitating the productions of these
large spikes of conversation activity in Twitter. Since these dominant spikes observed in
Twitter stand out so much from smaller oscillations it can be assumed that it is due to the
conversation taking place across the entire network of different communities and not con-
fined to the locality of clustered nodes in a single community. The boundary nodes of the
network are found, and over time the number is counted at each time point, shown in the
blue line in the first subplot. We see a single dominant spike for the number of boundary
nodes in the same region as that for the total conversation intensity in the bottom subplot.
There is a need to test whether the boundary node increase at the same time as the total
volume indicates that they provided vital routes for content to spread or is their number
only a consequence of the overall activity of the nodes uniformly over the network and
not in any way dependent on the presence of the boundary nodes. To investigate this, we
select a random set of nodes in the network of equal size to that of the boundary node set
and look for spikes in the volume of communication in this random set. A threshold is set
at a standard deviation above the mean Tweet count per minute for each subplot and is
shown as a dashed black line. Using a confusion matrix gives us a table of values for the
false positives (FP), false negatives (FN), true positives (TP), and true negatives (TN) for
a predictor. A confusion matrix for the boundary node set activity as an indicator of the
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Figure 6 Boundary node detection over time from real time monitoring of events in FearneHolly
Twitter discussion. The Twitter activity of a TV show, FearneHolly, is monitored and the Tweets are gathered.
The top plot shows the number of boundary nodes that produce a Tweet between time points in blue, and in
red is shown the number of Tweets from a random set of nodes of equal size to the boundary node set of the
Twitter network. In the bottom plot is the total volume of Tweets over time and we see a single dominant
spike in the conversation activity with a decay trailing afterwards. The black dashed line in each subplot is a
threshold for spike detection which is one standard deviation from the average Tweet count over time. We
can see that the boundary nodes produce a single dominant spike mirroring that of the total conversation
activity. The random set of nodes is selected to see whether the boundary node activity simply reflects the
total number of Tweets, but we can see a spike in the activity occurs at the start of the monitoring which is
not present in either of the other trajectories.

total Tweet volume is calculated:

( Boundary Spike No Boundary Spike
Volume Spike  
No Volume Spike  

)
. ()

For the randomly selected group of nodes of equal size to the boundary nodes set the
confusion matrix is:

( Random Group Spike No Random Group Spike
Volume Spike  
No Volume Spike  

)
. ()

Given the scope of the application BVA the precision of the indicator is the most relevant
measure to compare from the confusion matrices. For the boundary node set the preci-
sion (TP/(TP + FP)) for this dataset is . and for the randomly selected group of nodes
. (two significant figures given). The boundary node vicinity algorithm focusing on
the boundary node activity is working with a subset of the network which is appears to
have value during the intense information exchange events (the dataset can be provided
by contacting the author).

We look at the Tweets gathered from another TV show Got to Dance, shown in Figure ,
in a similar way to the previous FearneHolly example. A confusion matrix for the boundary
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Figure 7 Boundary node detection over time from real time monitoring of events in the ’Got to
Dance’ Twitter discussion. The Twitter activity of a TV show is monitored and the Tweets are gathered. The
first subplot shows the number of boundary nodes that produce a Tweet, and in the second subplot is shown
the number of Tweets from a random set of nodes of equal size to the boundary node set taken from this
Twitter network. In the bottom plot is the total volume of Tweets over time, and we see a time frame of
intense conversation activity. The dashed lines in black are a threshold for the number of Tweets in a minute
that are considered to be a spike and is a standard deviation above the mean Tweet count. The boundary
nodes as well as the rest of the network are taking part in the conversation with the ability for information
exchange between communities.

node set activity as an indicator for the total Tweet volume is calculated:

( Boundary Spike No Boundary Spike
Volume Spike  
No Volume Spike  

)
. ()

For the randomly selected group of nodes of equal size to the boundary nodes set the
confusion matrix is:

( Random Group Spike No Random Group Spike
Volume Spike  
No Volume Spike  

)
. ()

The precision values are . and . for the boundary nodes and random node sub-
set respectively. Both network subsets show substantial alignment with the conversation
spikes in the total volume count. The added value of looking at the boundary nodes in
this type of situation is to exploit the unique positioning for efficient spreading between
communities.

4 Discussion
The work presented here gives an efficient algorithm for ranking the ability of nodes in a
network, with community structure, to spread information between clusters. Previously
proposed methods impose large computational difficulties or are not based on principles
which realistically model how information across the communities can spread. Focusing
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attention on these boundary nodes in a network can be critical for monitoring whether
content may reach the point of becoming viral. In practice not all of the nodes in the net-
work may be directly influenceable. An alternative approach can be to indirectly influence
a chosen node by targeting the local vicinity of the node in the network. The boundary
vicinity algorithm (BVA) acknowledges nodes that may be placed in such a position to
have more or less influence on content leaving or entering a community of nodes in net-
work.

A strength of this boundary vicinity algorithm is that it combines the power of com-
munity detection algorithms with the use of random walkers to assist in the process of
investigating the range of influence of the boundary nodes. The results show that this al-
gorithm is comparable with betweenness centrality without the requirement for full the
maturity of a network to be visible. In situations where the observed connectivity is chang-
ing, analysing the network in sections based on a community structure is an approach to
provide more consistent results over time. The algorithm has a single tuning parameter
which determines the number of steps a random walker takes from the boundary nodes.
Using a fraction of the average path length for networks constructed with the Barabási-
Albert model has given stable results in our experiments.

Measures such as betweenness can provide a set of optimal targets for spreading content
along shortest path routes throughout the complete connected network. This task ignores
the challenges that might be faced which attempting to promote activity in the critical set
of nodes which lay on the boundary of the communities making up the complete network.
A list of the nodes which are best positioned to quickly spread a piece of content does not
address many of the practical challenges in inspiring activity as a non-invasive influencer.
Assessing the vicinity of the influencers for the boundary nodes gives a reasonable subset
for which attention must be given to ensure that cross pollination between clustered sets
of nodes can occur.

Overall, the proposed algorithm has the potential to quickly handle the task of analysis
with an online stream of large datasets. In particular real time event monitoring in en-
vironments such as Twitter where topic discussions can grow and decay rapidly, this is
especially important. With the goal of spreading the content as far as possible the bound-
ary nodes, and those nodes in its close vicinity, in a community must be targeted, which
is at the core of this method proposed here.
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