Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

A highly-efficient memory-compression scheme for GPU-accelerated intrusion detection systems

Bellekens, Xavier J.A. and Tachtatzis, Christos and Atkinson, Robert C. and Renfrew, Craig and Kirkham, Tony (2014) A highly-efficient memory-compression scheme for GPU-accelerated intrusion detection systems. In: SIN '14 Proceedings of the 7th International Conference on Security of Information and Networks. ACM Press, New York. ISBN 978-1-4503-3033-6

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Pattern Matching is a computationally intensive task used in many research fields and real world applications. Due to the ever-growing volume of data to be processed, and increasing link speeds, the number of patterns to be matched has risen significantly. In this paper we explore the parallel capabilities of modern General Purpose Graphics Processing Units (GPGPU) applications for high speed pattern matching. A highly compressed failure-less Aho-Corasick algorithm is presented for Intrusion Detection Systems on off-the-shelf hardware. This approach maximises the bandwidth for data transfers between the host and the Graphics Processing Unit (GPU). Experiments are performed on multiple alphabet sizes, demonstrating the capabilities of the library to be used in different research fields, while sustaining an adequate throughput for intrusion detection systems or DNA sequencing. The work also explores the performance impact of adequate prefix matching for alphabet sizes and varying pattern numbers achieving speeds up to 8Gbps and low memory consumption for intrusion detection systems.