
Quantum trajectories and open many-body quantum systems

Andrew J. Daley∗

Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, Scotland, UK
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Dated: June 2, 2014)

The study of open quantum systems - microscopic systems exhibiting quantum coherence that
are coupled to their environment - has become increasingly important in the past years, as the
ability to control quantum coherence on a single particle level has been developed in a wide variety
of physical systems. In quantum optics, the study of open systems goes well beyond understanding
the breakdown of quantum coherence. There, the coupling to the environment is sufficiently well
understood that it can be manipulated to drive the system into desired quantum states, or to
project the system onto known states via feedback in quantum measurements. Many mathematical
frameworks have been developed to describe such systems, which for atomic, molecular, and optical
(AMO) systems generally provide a very accurate description of the open quantum system on a
microscopic level. In recent years, AMO systems including cold atomic and molecular gases and
trapped ions have been applied heavily to the study of many-body physics, and it has become
important to extend previous understanding of open system dynamics in single- and few-body
systems to this many-body context. A key formalism that has already proven very useful in this
context is the quantum trajectories technique. This method was developed in quantum optics as a
numerical tool for studying dynamics in open quantum systems, and falls within a broader framework
of continuous measurement theory as a way to understand the dynamics of large classes of open
quantum systems. In this article, we review the progress that has been made in studying open many-
body systems in the AMO context, focussing on the application of ideas from quantum optics, and
on the implementation and applications of quantum trajectories methods in these systems. Control
over dissipative processes promises many further tools to prepare interesting and important states in
strongly interacting systems, including the realisation of parameter regimes in quantum simulators
that are inaccessible via current techniques.
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I. INTRODUCTION

A. Background of open quantum systems

Coupling between microscopic quantum mechanical systems and their environment is important in es-
sentially every system where quantum mechanical behaviour is observed. No quantum system that has
been measured in the laboratory is an ideal, perfectly isolated (or closed) system. Rather, coherent dynam-
ics (as described by a Schrödinger equation) typically last only over short timescales, before the dynamics
become dominated by coupling of the open system [1–6] to its environment, leading to decoherence, and
the onset of more classical behaviour. Over the last few decades, quantum mechanical behaviour has been
observed and controlled in a diverse range of systems, to the point where many systems can be controlled
on the level of a single atom, ion, molecule, photon or electron. As a result, the need to better understand
dynamics in open quantum systems has increased. While philosophically it would be possible to extend
the boundary of the system and include the environment in a larger system, this is typically impractical
mathematically due to the enormous numbers of degrees of freedom involved in describing the environ-
ment. Hence, we usually look to find an effective description for dynamics in the approximately isolated
system.

With the recent focus on controlling quantum coherence, especially to store and manipulate quantum
information [7–10], investigation of open quantum systems has become prominent across various fields of
physics. Quantum coherence has been observed, and decoherence studies performed in atomic systems
including photon modes in cavities [11–15]; single trapped atoms [16], ions [8, 17–21], and molecules [22, 23];
and in solid state systems [9, 24] including superconducting junctions [25], and spin systems including
quantum dots, colour centres, Cooper pair boxes [10, 26], also in conjunction with microwave stripline
cavities. In condensed matter physics, there have been many investigations of dissipative phenomena,
a whole class of which began with the Caldeira-Leggett treatment of a spin coupled to a bosonic bath
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FIG. 1: General framework for an open quantum system: A small quantum system interacts with its environment,
leading to a combination of coherent and dissipative dynamics for the small system. In quantum optics, and atomic,
molecular, and optical (AMO) systems more generally, the resulting dynamics can both be microscopically well
understood, as well as controlled to engineer dynamics or specific quantum states. This involves a separation of
energy and frequency scales, where the energy and frequency scales of the small system that are directly coupled
to the environment (ωsys) and the relaxation rates for relevant correlation functions in the environment (ωenv) are
much larger than the frequency scales of dynamics induced by the coupling (Γ).

[27, 28]. The study of open quantum systems also has importance in cosmology [29], and quantum-optical
approaches have recently been applied to treat pion decay in high-energy physics [30, 31].

While many studies seek to characterise and reduce the destruction of quantum coherence in an open
system, a key guiding aim in quantum optics over the last thirty years has been the use of controlled
coupling to the environment to control and manipulate quantum coherence with high precision. This
includes manipulating the environment in such a way as to drive the system into desired quantum states,
increasing quantum coherence in the sample. In the laboratory, this philosophy began with optical pumping
in atomic physics [32, 33], whereby using laser driving and spontaneous emission processes, atoms can be
driven into a single atomic state with extraordinarily high fidelities approaching 100%. This has lead on
to techniques for laser cooling of trapped ions [20, 34, 35] and of atomic and molecular samples [36], which
has allowed the production of atomic gases with temperatures of the order of 1 µK. This, in turn, set
the stage for realising Bose-Einstein condensation [37–39] and degenerate Fermi gases [40, 41], as well as
providing a level of high-precision control necessary for quantum computing with trapped ions [17, 20, 42].
Such driving processes, making use of the coupling of the system to its environment, have been extended
to algorithmic cooling in Nuclear Magnetic Resonance (NMR) systems [43, 44], and are recently being
applied to cool the motional modes of macroscopic oscillators to near their quantum ground state [45].
A detailed understanding of the back-action on the quantum state of the system from coupling to the
environment has also been useful in the context of high-fidelity state detection (e.g., in electron shelving
[46–51]), or in quantum feedback [52–56], and have also been exploited for control over atoms and photons
in Cavity QED [57, 58].

This high level of control is possible because in quantum optics several key approximations can often
be made regarding the coupling of a system to its environment, which in combination make the control
of this coupling both tractable theoretically and feasible experimentally. This includes the fact that the
dynamics are often Markovian (i.e., the environment relaxes rapidly to an equilibrium state and on relevant
timescales has no memory of previous interactions with the system), and that the system-environment
coupling is typically weak compared with relevant system and environment energy scales. The possibility
of making such approximations has resulted in the development of several complementary formalisms,
including quantum Langevin equations [59–63], quantum master equations [2, 59, 64, 65], and continuous
measurement theory [2, 52]. These techniques and related ideas have been applied extensively over the
last thirty years to a variety of single-particle and few-particle quantum systems, especially in the context
of atomic, molecular, and optical (AMO) experiments. Techniques such as quantum master equations in
Lindblad form [2] are sometimes applied in other contexts, especially in a range of solid-state systems.
However, many solid-state systems are dominated by non-Markovian aspects of their dissipative dynamics
[1], which are consequently not captured by this form. This is in strong contrast to the AMO/quantum
optics context, where the approximations involved in deriving these equations are typically good to many
orders of magnitude.

Many numerical techniques were developed for solving the equations produced within these formalisms.
One simple but highly effective technique in this context is the quantum trajectory technique (also known
as the Monte Carlo wavefunction method) [3, 66–69], which allows for the numerical solution of a master
equation without propagating a density matrix directly. Instead, pure states are propagated in time, with
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the dissipative process being described by a modification to the Hamiltonian, combined with quantum
jumps - sudden changes in the state that take place at particular times. By taking an appropriate stochastic
average over the times and type of quantum jumps, expectation values for the system propagated under
the master equation can be faithfully and efficiently reconstructed within well-controlled statistical errors.
This technique is particularly appealing, because when combined with continuous measurement theory, it
can also help to give a physical intuition into the workings of the dissipative process.

B. Open many-body quantum systems in a AMO context

Over the last decade and a half, AMO systems (cold atoms and molecules, as well as trapped ions
and photons) have been increasingly used to study strongly-interacting many-body systems. This has
reached a level where these systems can be used to engineer microscopic Hamiltonians for the purposes of
quantum simulation [6, 70–76]. As a result, it has become important to explore the application of existing
experimental techniques and theoretical formalisms from quantum optics in this new many-body context.
Particularly strong motivation in this respect has come from the desire to engineer especially interesting
many-body states, which often require very low temperatures (or entropies) in the system. An example of
this are low-temperature states of the fermionic Hubbard model, which can be engineered in optical lattices
[75, 76]. Many sensitive states in this model arise because of dynamics based on superexchange interactions,
which arise in perturbation theory and can be very small in optical lattice experiments. A key current
target of optical lattice experiments is the realisation of magnetic order driven by such interactions [77–80],
with eventual goals to realise more complex spin physics or even pairing and superfluidity of repulsively
interacting fermions [75]. For these and other fragile states, understanding dissipative dynamics in the
many-body system is then necessary both to control heating processes, and to provide new means to drive
the systems to lower temperatures.

Such studies are particularly facilitated by the fact that many of the same approximations that are made
in describing open few-particle systems in quantum optics can also be made in these AMO many-body
systems. This means both that the physics of open systems as they appear in quantum optics can be
investigated in a wholly new context, and that mathematical techniques such as master equations and
quantum Langevin equations, as well as numerical techniques such as quantum trajectory methods can be
immediately applied to these systems in a way that faithfully represents the microscopic physics.

This has already lead to many important developments. Some of these have direct practical importance
in the experiments - e.g., in order to cool many-body systems to the temperatures required to realise
important many-body physics [80], it has become important to understand decoherence in a many-body
context in order to characterise the related heating processes [81–86]. Other studies have involved funda-
mentally different approaches to state preparation, including studies of how to use controlled dissipation
to produce new cooling methods [87–91], or to drive the system into desired many-body states - including
Bose-Einstein condensates (BECs) or metastable states such as η pairs [92, 93], paired states [94–98], or
even states with topological order [99, 100]. Dissipation can also play a key role in suppressing two-body
[23, 101–103] and three-body [104–106] loss processes via a continuous quantum Zeno effect, enabling the
production of interesting many-body states requiring effective three-body interactions [104, 107–121], and
similar effects are seen in locally induced single-particle losses in cold gases [122–124]. Such effects can also
be used to manipulate or protect states in quantum computations [125, 126] and quantum memories [127],
as well as to prepare entangled states dissipatively [128–130], or realise specific quantum gates for group-II
atoms [131, 132]. It is also possible to generate spin-squeezed states using collisional loss in fermions [133]
or collisions with background gases [134], as well as to protect states during adiabatic state preparation
[135].

Studies of dissipation have more recently included investigating the competition between dissipation
and coherent dynamics, including dissipative phase transitions [136–138], excitation dynamics in clouds of
Rydberg atoms [98, 139–147], and collective spin dynamics on the clock transition in group II atoms [148].
Other work has begun to characterise dissipative driving processes by identifying universal classes of states
and phase transitions that can be realised in this way [149, 150]. The observation of many-body dissipation
in AMO systems extends further to interacting ultracold atoms in optical cavities [151], beginning with
the observation of the Dicke phase transition [152–154] and continuing to more complex dynamics of
many moving atoms interacting with the cavity [155–159], as well as to multimode cavities [160–162]
and systems of strongly interacting photons [163–167]. In addition, dissipative quantum simulation and
state preparation [6] has been observed in trapped ions [168, 169] and proposed in optomechanical arrays
[170, 171].
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C. Purpose and outline of this review

As is clear from the previous section, this area of research, combining ideas and techniques from quantum
optics with strongly interacting many-body systems, has developed dramatically in the last few years.
Control over dissipation promises many new tools to prepare interesting and important many-body states,
and to investigate models in quantum simulators that are inaccessible to current methods.

In this review, we set about facilitating discussion between the AMO and many-body communities by
introducing open many-body systems as they are understood in the AMO context. We will focus on
real-time dynamics, especially of open quantum system out of thermal equilibrium. We will also build
our discussion around the use of quantum trajectory techniques, which provide a numerical method for
detailing with dissipative dynamics, and also together with continuous measurement theory, provide a way
to understand the dynamics for this class of open AMO quantum systems. We discuss the numerical imple-
mentation of quantum trajectories for many-body systems, and address a series of examples highlighting
interesting physics and important tools that are already being explored in these dissipative many-body
systems.

The review is structured as follows – we begin with a brief introduction to open quantum systems as
they are discussed in quantum optics, noting the key approximations that can be made for many open
AMO systems, and introducing notation. We then give an introduction to the quantum trajectories
method and its physical interpretation, as well as its integration with time-dependent methods for many-
body systems, especially the time-dependent Density Matrix Renormalisation Group (t-DMRG). We then
introduce several examples of open many-body AMO systems, including light scattering from strongly
interacting atoms in an optical lattice, collisional two-body and three-body losses as well as loss processes
with single atoms, and quantum state preparation by reservoir engineering – including methods to drive
systems dissipatively into states with important many-body character. We finally return to further details
of the physical interpretation of quantum trajectories by briefly introducing continuous measurement
theory, before finishing with an outlook and summary.

II. OPEN QUANTUM SYSTEMS IN QUANTUM OPTICS

Throughout this review, we will work in the framework of a quantum optics description of open quantum
systems. Open quantum systems have been regularly discussed in many areas of physics, but the AMO
systems that are studied in quantum optics often enable a series of approximations that allow specific
types of understanding and control over the dynamics. In this section we introduce the concept of an open
system, and the key approximations that lead to simplified descriptions of system dynamics. We then
introduce a key example of those descriptions, specifically the Lindblad form of the master equation.

A. General framework

The general framework for an open quantum system is sketched in Fig. 1 [1, 2]. We consider a small
quantum system1, which is coupled to a large environment, which can also be thought of as a reservoir.
This is a similar relationship to the heat bath and the system in the canonical ensemble of statistical
mechanics, and for this reason the environment is also referred to as the “bath” in some literature.

In this setup, the Hamiltonian for the total system, including both the system and its environment,
consists of three parts,

Htotal = Hsys +Henv +Hint. (1)

Here Hsys is the system Hamiltonian, describing the coherent dynamics of the system degrees of freedom
alone, in the absence of any coupling to the reservoir. In quantum optics, this is often a two-level system
(e.g., an atom, a spin, or two states of a Cooper pair box), in which case we typically might have Hsys =

1 In a many-body context, a “small” quantum system might be relatively large and complex – it should just be very
substantially smaller, e.g., in the scale of total energy, or total number of degrees of freedom, when compared with the
environment to which it is coupling
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~ωsysσz, where ωsys is a system frequency scale, and σz is a Pauli operator for a two-level system. Another
common system is to have a harmonic oscillator (e.g., a single mode of an optical or microwave cavity, or

a single motional mode of a mechanical oscillator), with system Hamiltonian Hsys = ~ωsysa
†
hoaho, where

aho is a lowering operator for the harmonic oscillator. The degrees of freedom for the environment and
their dynamics are described by the hamiltonian Henv, and the interaction between the system and the
reservoir is described by the hamiltonian Hint.

In quantum optical systems the reservoir usually consists of a set of bosonic modes, so that

Hres =
∑

l

∫ ∞

0

dω ~ω b†l (ω)bl(ω), (2)

where bl(ω) is a bosonic annihilation operator for a mode of frequency ω. The index l is convenient for
describing multiple discrete modes at a given frequency, e.g., in the case that these are the modes of an
external radiation field, l can play the role of a polarisation index. These operators obey the commutation

relation [bl(ω), b†l (ω
′)] = δ(ω − ω′)δll′ , where δ(ω) denotes a Dirac delta function and δll′ a Kronecker

delta. Note that in general, a reservoir can have a frequency-dependent density of modes g(ω), which
we have assumed for notational convenience is constant in frequency. Below when we make a Markov
approximation for the dynamics, we will assume that this density of modes is slowly varying over the
frequencies at which the system couples to the reservoir.

The interaction Hamiltonian Hint analogously takes a typical form

Hint = −i~
∑

l

∫ ∞

0

dω κl(ω)
(
x+
l + x−l

) [
bl(ω)− b†l (ω)

]
(3)

≈ −i~
∑

l

∫ ∞

0

dω κl(ω)
[
x+
l bl(ω)− x−l b

†
l (ω)

]
, (4)

where x±l is a system operator, and κ(ω) specifies the coupling strength. In connection with the two-level

systems listed above, for a two-level system, we might have x−l = σ−, the spin lowering operator, and

x+
l = σ+, the spin raising operator. In the case that the system is a Harmonic oscillator, we would

typically have x−l = aho. In the second line of this expression, we have explicitly applied a rotating wave
approximation, which we will now discuss.

B. Key approximations in AMO systems

A key to the microscopic understanding and control that we have of open AMO quantum systems is the
fact that we can usually make three approximations in describing the interaction between the system and
the reservoir that are difficult to make in other systems [2]:

1. The rotating wave approximation - In the approximate form eq. (4) of the interaction Hamiltonian

we gave above, we neglected energy non-conserving terms of the form x+
l b
†
l (ω) and x−l bl(ω). In

general, such terms will arise physically in the couplings, and will be of the same order as the
energy conserving terms. However, if we transform these operators into a frame rotating with the
system and bath frequencies (an interaction picture where the dynamics due to Hsys and Henv are
incorporated in the time dependence of the operators), we see that the energy-conserving terms
will be explicitly time-independent, whereas these energy non-conserving terms will be explicitly
time-dependent, rotating at twice the typical frequency scale ωsys. This is shown explicitly below
in eq. (A2) in section A 1. In the case that this frequency scale is much larger than the important
frequency scales for system dynamics (or the inverse of the timescales for which we wish to compute
the dynamics), the effects of these energy non-conserving terms will average to zero over the relevant
dynamical timescales for the system, and so we can neglect their effects in describing the dynamics.

2. The Born approximation - We also make the approximation that the frequency scales associated
with dynamics induced by the system-environment coupling is small in scale compared with the
relevant system and environment dynamical frequency scales. That is, if the frequency scales ωsys at
which the system couples are much larger than the frequency scales Γ corresponding to the system
dynamics induced by the environment, then we can make a Born approximation in time-dependent
perturbation theory.
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FIG. 2: (a) Coupling constant as a function of frequency, κ(ω), illustrating a slowly varying coupling strength
around the central system frequency ωsys. This is a key to several of the approximations made for open quantum
systems in quantum optics. (b) Comparison of the scales for a two-level system. The system frequency is the optical
frequency, ωsys, associated with the energy difference between the ground and excited levels. In order to make the
standard approximations, we require the timescale for the decay of the excited state, Γ−1, i.e., the timescale for
the dynamics induced by coupling to the environment, to be much longer than the optical timescale associated
with the transition, or in freqeuncy units, Γ−1 � ω−1

sys. We also work in a limit where any remaining system
dynamics are associated with much smaller frequency scales. In this case, the coupling strength Ω0, associated
with the frequency of Rabi oscillations between the states when they are coupled strongly on resonance, as well as
the frequency of detuning from resonance ∆, satisfy Ω0,∆� ωsys.

3. The Markov approximation - We assume that the system-environment coupling is frequency/time-
independent over short timescales, and that the environment returns rapidly to equilibrium in a
manner essentially unaffected by its coupling to the system, so that the environment is unchanged in
time, and the dynamics of the system are not affected by its coupling to the environment at earlier
times, i.e., the time evolution of the system does not depend on the history of the system.

Each of these three approximations are normally exceptionally well justified, with the neglected terms
in equations of motion being many orders of magnitude smaller than those that are retained. This results
from the existence of a large frequency/energy scale that dominates all other such scales in the system
dynamics described by Hsys, and in the system-environment interaction Hint. Specifically, we usually
have a situation where [Hsys, x

±
l ] ≈ ±~ωlx±l , and the frequencies ωl, which are all of the order of some

system frequency ωsys, (1) dominate any other processes present in the system dynamics, and (2) are much
larger than the frequency scales of dynamics induced by coupling to the reservoir, Γ. The first of these
two conditions allows us to make rotating wave approximations in the interaction Hamiltonian, without
which we could not make the Markov approximation. The second of these allows us to make the Born
approximation.

The Markov approximation can be physically interpreted in two parts: it implies firstly that the system-
environment coupling should be independent of frequency, to remove any back-action of the environment
on the system that is not local in time, and secondly, that any correlation functions in the reservoir should
retain no long-term memory of the interaction with the system. The first of these two pieces is again
justified by the large frequency scale for the energy being transferred between the system and the reservoir
relative to the effective coupling strength. As depicted in Fig. 2, the system and environment couple in
a range of frequencies that is of the order of the effective coupling strength, Γ, and if Γ� ωsys, then the
variation in coupling strength κ(ω) over the range of frequencies where the modes couple significantly to

the system is very small. For a single index l, we can write κ(ω) ≈
√

Γ/(2π). Note that we implicitly made
this assumption for the density of modes in the reservoir g(ω) when we didn’t include such a density of
modes in eqs. (2) and (4) above. The second requirement depends on the physical details of the reservoir,
and justifying this part of the approximation usually requires comparing the typical coupling timescales
Γ−1 with environment relaxation timescales ω−1

env, which are in general different to ω−1
sys. However, for many

typical cases, we also find that ωenv ∼ ωsys.
In the case of decaying two-level atoms, or loss of photons from an optical cavity, these timescales are

both related to the relevant optical frequency. On a physical level, when a two-level atom decays and
emits a photon of wavelength λopt and frequency ωopt, then the relevant system timescale ω−1

sys = ω−1
opt, and

we have a requirement that the decay time, which is the relevant system-environment coupling timescale
Γ−1, is much longer than ω−1

opt. In terms of the reservoir relaxation time, physically the time it takes for
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the photon to propagate away from the atom within the photon wavelength λ is also of the order 1/ωopt.
In that sense, the single frequency ωopt is the large frequency scale for each of the three approximations.
The ratio of this frequency scale to Γ is, for typical optical systems ∼ 1015/108 = 107, so that the
approximations made here are good to many orders of magnitude.

C. Master Equation

The approximations given above make it possible to derive an equation of motion for the behaviour of
the system alone in the presence of the dissipation due to coupling to the environment. Because of the
combination of dissipative and coherent dynamics, this is expressed in terms of the density operator ρ
describing the state of the system, which can be defined based on the total density operator for the system
and the environment ρtotal as ρ = Trenv{ρtotal}, where the trace is taken over the environment degrees of
freedom. There are many routes to derive such an equation of motion (see, e.g., [1, 2, 59, 64, 65]), one of
which is outlined in appendix A, via a continuous measurement formalism.

The resulting markovian master equation takes a Lindblad form [172] (see, e.g., [2, 59, 65])

ρ̇ = − i

~
[H, ρ]− 1

2

∑

m

γm
[
c̃†mc̃mρ+ ρc̃†mc̃m − 2c̃mρc̃

†
m

]
. (5)

Here, H is the remaining system Hamiltonian, after the frequency scale ωsys of the coupling between the
system and the environment has been transformed away. For a two-level system, this is a Hamiltonian
describing the coupling between levels and a detuning in the rotating frame (see section III F 1 below),
i.e., in an interaction picture we we transform the operators so that we make the dominant coupling terms
in the Hamiltonian time-independent. The operators c̃m are sometimes called Lindblad operators (or
jump operators, as described below), and describe dissipative dynamics (including decoherence and loss
processes) that occur at characteristic rates γm.

Note that the c̃m are all system operators, and the time-dependence of the environment does not appear
in this equation. For the interaction Hamiltonian in Eq. (4), if we assume that all of the reservoir modes
that couple to the system are unoccupied, we will have c̃l = x−l . One example of c̃m would be a transition
operator σ− from an excited state to a ground state in the two-level system depicted in Fig. 2b, describing
spontaneous emissions, and further examples are given below in sections III D, III F and V. We also note at
this point that in general, the c̃m are non-Hermitian, although they can always be interpreted as resulting
from continuous measurement of Hermitian operators acting only on the environment, as discussed in
appendix A. In the case that all c̃m are Hermitian, we can think of this master equation as representing
a continuous measurement of the system operators cm.

The general form in eq. (5) also demonstrates explicitly the trace-preserving property of the master
equation (Tr{ρ̇} = 0). This form of dissipative dynamics is sometimes used as a toy model for dissipation
because of its relatively simple interpretation. In the AMO / quantum optics context, it is particularly im-
portant because it describes the microscopic behaviour under the well-controlled approximations described
in section II B.

In order to reduce the notational complexity, we will combine the rate coefficients with the operators in
the form cm =

√
γmc̃m, and we will also equate energy and frequency scales setting ~ ≡ 1, to obtain

ρ̇ = −i[H, ρ]− 1

2

∑

m

[
c†mcmρ+ ρc†mcm − 2cmρc

†
m

]
,

Note that we can also express this in the convenient alternative form

ρ̇ = −i(Heffρ− ρH†eff) +
∑

m

cmρc
†
m, (6)

where we refer to

Heff = H − i

2

∑

m

c†mcm

as the effective Hamiltonian for the dissipative system. in this form, the term
∑
m cmρc

†
m is often called

the recycling term, as it recycles the population that is lost from certain states due to the non-Hermitian
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effective Hamiltonian, placing it in other states. For a two level system with decay from an excited state
to the ground state, one may think of the non-Hermitian part as removing amplitude from the excited
state, and the recycling term as reinstating this in the ground state (see the many-body examples for a
more detailed discussion of this).

For some simple systems, master equations can be solved analytically, to obtain expectation values of a
given physical observable A at particular times, 〈A(t)〉 = Tr{Aρ(t)} or also two-time correlation functions
of the form 〈A(t+ τ)B(t)〉. In the next section we will discuss how the dynamics described by the master
equation can be both computed and physically interpreted using quantum trajectories techniques. We
then give some specific examples of small physical systems described by master equations. In the following
two sections, we then discuss how master equations of the form eq. (6) describing many-body systems can
be solved by combining quantum trajectories techniques with many-body numerical methods, and then
discuss a number of examples of recent work on such physical systems.

III. QUANTUM TRAJECTORIES

Quantum trajectory techniques were developed in Quantum Optics in the early 1990s [3, 66–69, 173]
as a means of numerically simulating dissipative dynamics, and can be applied to any system where the
time evolution of the density operator is described via a master equation (in Lindblad form). These
techniques involve rewriting the master equation as a stochastic average over individual trajectories, which
can be evolved in time numerically as pure states. These techniques avoid the need to propagate a full
density matrix in time (which is often numerically prohibitive), and replace this complexity with stochastic
sampling. The key advantage this gives is that if the Hilbert space has dimension NH , then propagating
the density matrix means propagating an object of size N2

H , whereas stochastic sampling of states requires
propagation of state vectors of size NH only. Naturally, the penalty that is paid is the need to collect
many samples for small statistical errors, and it is important that the number of samples required remains
smaller than the size of the Hilbert space in order to make this efficient.

In quantum optics, these techniques were developed in parallel by a number of groups, as they arose
out of studies of different open-quantum system phenomena. The versions of these techniques that most
closely resemble what we present here were developed by Dalibard, Castin and Mølmer [67, 68] as a Monte
Carlo method for simulation of laser cooling; by Dum et al. [69, 173], arising from studies of continuous
measurement; by Carmichael [3], in studying of the generation of non-classical states of light; and by
Hegerfeldt and Wilser [174], in modelling a single radiating atom. The term quantum trajectories was
coined by Carmichael, whereas the other approaches were referred to as either a quantum jump approach,
or the Monte Carlo wavefunction method. This later term should not be confused with so-called quantum
Monte Carlo techniques - the Monte Carlo treatment performed here is classical, in the sense that there
is no coherent sum of amplitudes involved in evaluating expectation values from the samples we obtain.
Mathematically, all of these approaches are essentially equivalent, but there are differences in the numerical
implementations.

In quantum optics these methods have been applied to a wide variety of problems, including laser
cooling [68, 175–177] and coherent population trapping [178], the behaviour of cascaded quantum systems
[179–181], the continuous quantum Zeno effect [182–184], two-photon processes [185], decoherence in atom-
field interactions [186], description of quantum non-demolition measurements [187] and decoherence in the
atom-optics kicked rotor [188–191]. For further examples, see the review by Plenio and Knight [66] and
references therein. Note that complementary stochastic approaches were developed at the same time,
especially by Gisin and his collaborators [192–194]. These and other related quantum state diffusion
approaches [195, 196] involve continuous stochastic processes, but can be directly related back to the
quantum trajectories formalism by considering homodyne detection of the output of a quantum system
(see, e.g.,[3, 197]).

In the remainder of this section we introduce the quantum trajectories method and illustrate its use
and physical interpretation. After introducting notation for quantum and statistical averages, we begin
by presenting the first-order Monte Carlo wavefunction method put forward by Dalibard et al. [67] and
Dum et al. [69], and discuss statistical errors and convergence in this method. We then discuss the
physical interpretation of quantum trajectories, before continuing with generalisations to calculations that
are higher-order in the timestep. We then give two illustrative examples. The first is a simple example
involving the optical Bloch equations for a two-level atom, whereas the second example gives a preview of
our discussion of open many-body systems by treating dephasing of a hard-core Bose gas on a lattice.
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A. Stochastic averages and quantum mechanical expectation values

In determining expectation values of a particular operator A below, we will often have to take both the
quantum mechanical expectation value and a stochastic average. To determine the expectation value of
a quantity from a system density operator ρ, we compute 〈A〉 = Tr{Aρ}. If we can expand the density
operator in terms of pure states |ζl〉 as ρ =

∑
l pl|ζl〉〈ζl|, then we can also expand

〈A〉 = Tr{Aρ} =
∑

l

pl〈ζl|A|ζl〉 ≡
∑

l

plAl ≡ Al. (7)

The expression 〈ζi|A|ζi〉 is a quantum mechanical expectation value, and the weighted sum over l gives
a statistical or stochastic average over the values in the sum for each state |ζl〉, Al = 〈ζl|A|ζl〉. Below,
we will denote the total expectation value of an operator with angle brackets 〈A〉 as we do here. Where
we explicitly want to denote a stochastic or statistical average only, we will either use an overline Al or a
subscript on the angle brackets, 〈Al〉s.

B. First-order Monte Carlo wavefunction method

The simplest form of the quantum trajectory method involves expanding the master equation to first
order in a time step δt, and was first described in this form by Dalibard et al. [67] and Dum et al. [69].
It involves the evolution of individual trajectories |φ(t)〉, over which we average values of observables.

For a single trajectory, the initial state |φ(t = 0)〉 should be sampled from the density operator at time
t = 0, ρ(t = 0). For some systems, ρ(t = 0) may be a pure state, and this is the case for a number of our
many-body examples. In that case, the initial state is always the same state, ρ(t = 0) = |φ(t = 0)〉〈φ(t =
0)|. Once we have an initial state, we propagate forward in time, making use of the following procedure
in each time step:

1. Taking the state at the beginning of the time step, |φ(t)〉, we first compute the evolution under the
effective Hamiltonian. This will give us one candidate for the new state at time t+ δt,

|φ(1)(t+ δt)〉 = (1− iHeffδt) |φ(t)〉, (8)

and we compute the norm of the corresponding state, which will be less than one because Heff is
non-Hermitian:

〈φ(1)(t+ δt)|φ(1)(t+ δt)〉 = 〈φ(t)|
(

1 + iH†effδt
)

(1− iHeffδt) |φ(t)〉 (9)

= 1− δp. (10)

Here, we can consider δp as arising from different potential decay channels, corresponding to the
action of different Lindblad operators cm,

δp = δt〈φ(t)|i(Heff −H†eff)|φ(t)〉 (11)

= δt
∑

m

〈φ(t)|c†mcm|φ(t)〉 ≡
∑

m

δpm. (12)

We can effectively interpret δpm as the probability that the action described by the operator cm will
occur during this particular time step.

2. Then, we choose the propagated state stochastically in the following manner. We would like to assign
probabilities to different outcomes so that:

• With probability 1− δp

|φ(t+ δt)〉 =
|φ(1)(t+ δt)〉√

1− δp (13)

• With probability δp

|φ(t+ δt)〉 =
cm|φ(t)〉√
δpm/δt

(14)
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where we choose one particular m, which is taken from all of the possible m with probability

Πm = δpm/δp (15)

In a practical numerical calculation, this action requires drawing a uniform random number r1

between 0 and 1, and comparing it with δp. If r1 > δp, then no jump occurs, and the first option
arrising from propagation under Heff , i.e., |φ(t + δt)〉 ∝ |φ(1)(t + δt)〉 is chosen. If r1 < δp, then a
jump occurs, and we must choose the particular cm operator to apply. We therefore associate each m
with an interval of real numbers, with the size of the interval being proportional to δpm. Normalising
the total interval length to one so that every m corresponds uniquely to a range between 0 and 1,
we then choose a second random number r2, also uniformly distributed between 0 and 1, and choose
the associated cm for which the assigned interval contains r2.

In order to see that this stochastic propagation is equivalent to the master equation, we can form the
density operator,

σ(t) = |φ(t)〉〈φ(t)|. (16)

From the prescription above, the propagation of this density operator in a given step is:

σ(t+ δt) = (1− δp) |φ
(1)(t+ δt)〉√

1− δp
〈φ(1)(t+ δt)|√

1− δp + δp
∑

m

Πm
cm|φ(t)〉√
δpm/δt

〈φ(t)|c†m√
δpm/δt

, (17)

where X for any X denotes a statistical average over trajectories, as opposed to the quantum mechanical
expectation values or mathematically exact averages, which we will denote 〈X〉. Rewriting the terms from
the above definitions, we obtain

σ(t+ δt) = σ(t)− iδt(Heffσ(t)− σ(t)H†eff) + δt
∑

m

cmσ(t)c†m, (18)

which holds whether σ(t) corresponds to a pure state or to a mixed state. In this way, we see that taking
a stochastic average over trajectories is equivalent to the master equation

ρ̇ = −i(Heffρ− ρH†eff) +
∑

m

cmρc
†
m. (19)

Note that the equivalence between the master equation and the quantum trajectories formulation doesn’t
require a particular choice of δt. In particular, δt can be chosen to be small in evaluating this evolution.
Naturally, choosing very large δt would strongly compromise the accuracy of the method when propagating
the state in time. In the subsection III E, we will deal with how to improve upon this first-order method
numerically.

1. Computing single-time expectation values

In order to compute a particular quantity at time t, i.e., 〈A〉t = Tr{Aρ(t)}, we simply compute the
expectation value of A for each of our stochastically propagated trajectories, 〈φ(t)|A|φ(t)〉, and take the
average of this quantity over all of the trajectories,

〈A〉t ≈ 〈φ(t)|A|φ(t)〉. (20)

Provided our random number generators are well behaved, the trajectories are statistically independent,
allowing for simple estimate of statistical errors in the computation of 〈A〉t, as discussed in section III C.

2. Computing two-time correlation functions

Two-time correlation functions of the form C(t, τ) = 〈A(t+ τ)B(t)〉 appear in many contexts, including
spectral functions [198], and also current autocorrelation functions in many-body physics [199]. These
functions are a little more complicated to compute than single-time expectation values. To compute such
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correlation functions from a master equation, we typically apply the quantum regression theorem [2, 200],
which can be applied generally to an operator Xij = |i〉〈j|, where |i〉 and |j〉 belong to an orthonormal set
of basis states for the Hilbert space. If we write Cij(t, τ) = 〈Xij(t + τ)B(t)〉, then we note that Cij(t, 0)
are one-time averages that can be calculated directly from the density matrix at a single time, and the τ
dependence can be computed as

∂Cij
∂τ

(t, τ) =
∑

kl

MijklCkl(t, τ), (21)

where the Mijkl are the same matrix elements that appear in the equation of motion for one-time averages
[2, 200]

d〈Xij(t)〉
dt

=
∑

kl

Mijkl〈Xkl(t)〉. (22)

To reproduce these values from quantum trajectories, we follow a simple procedure [66, 68]. We propa-
gate a sample trajectory to time t, and then generate four helper states:

|χR±(0)〉 =
1√
µR±

(1±B)|φ(t)〉, (23)

|χI±(0)〉 =
1√
µI±

(1± iB)|φ(t)〉, (24)

where µR± and µI± normalise the resulting helper states. We then evolve each of these four states using the
quantum trajectories procedure, and compute the correlation functions

cR±(τ) = 〈χR±(τ)|A|χR±(τ)〉, (25)

cI±(τ) = 〈χI±(τ)|A|χI±(τ)〉. (26)

We can then reconstruct a sample for

C(t, τ) =
1

4

[
µR+c

R
+(τ)− µR−cR−(τ)− iµI+c

I
+(τ) + iµI−c

I
−(τ)

]
, (27)

and average this over both the evolution up to time t and the propagation of helper states to time τ .

C. Statistical Errors and convergence

1. Estimating statistical errors

Using the above procedure or generalisations that are higher-order in the timestep δt (see section III E),
we generate N sample trajectories. Under the assumption that the random numbers used in the numerical
implementation are statistically random and uncorrelated2, these trajectories are statistically independent,
and we can estimate the correct mean 〈X〉 of any operator of interest X̂ as

X(t) =
1

N

∑

i

Xi ≡
1

N

∑

i

〈φi(t)|X̂|φi(t)〉. (28)

The central limit theorem implies that for sufficiently large N , the probability distribution for X will be
well approximated by a Gaussian distribution with mean 〈X〉. The statistical error in this mean is the

2 See, e.g., Ref. [201] for a general discussion of random number generators. For typical calculations, only a few tens of
thousands of random numbers must be generated, and good quality pseudorandom number generators suffice. See Ref. [202]
for a recent discussion of improvements to that are possible using quantum random number generators.
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standard deviation of that distribution, which in turn can be estimated based on the variance of the values
Xi in the following way. Denoting a statistical average as 〈. . .〉s, we consider

Var[X] =
〈(
X − 〈X〉s

)2〉
s

=

〈(
1

N

N∑

i=1

Xi

)2

− 2X〈X〉s + 〈X〉2s

〉

s

=
1

N2

N∑

i=1

N∑

j=1

〈XiXj〉s − 〈X〉2s =
1

N2

N∑

i=1

〈
X2
i

〉
s

+
N − 1

N
〈X〉2s − 〈X〉2s

=
1

N
(〈X2〉s − 〈X〉2s) =

1

N
Var[X].

(29)

In deriving this standard result, we use both the independence of the trajectories 〈XiXj 6=i〉s =

〈Xi〉s〈Xj 6=i〉s, and the replacement that 〈X〉s = 〈X〉s, i.e., the variance written in the last line is the
true variance of the distribution for X. As a result, it can be shown (see, e.g., Ref. [201]) that we should
use the approximator

Var[X] ≈
∑N
i=1(Xi −X)2

N − 1
, (30)

if we would like to estimate this based on the samples we obtain in the calculation.
In this sense, we can always calculate the statistical error σA in our estimate of a quantity 〈A〉 by taking

the estimate of the population standard deviation ∆A from our N samples, and dividing by
√
N ,

σA =
∆A√
N
. (31)

How many trajectories we will require for good convergence will depend both on the details of the
dynamics and on the quantity being calculated. For variables with non-zero mean, we would typically
like to have σA/〈A〉 � 1, which implies that

√
N � ∆A/〈A〉. As the sample estimate overestimates

the population standard deviation (see e.g., [68]), we can consider the sample estimate for the standard
deviation ∆A here.

2. Global quantities vs. local quantities

In Mølmer et al. [68], there is a discussion of the different number of trajectories required for global
quantities vs. local quantities to be straight-forwardly estimated. This is done for single-particle systems
in a Hilbert space dimension NH .

For global quantities such as the total energy AG = Etot, there is usually a fixed relationship between
the estimate ∆AG and 〈AG〉 that is independent of the dimension of the Hilbert space NH . For example,
in the Brownian motion of a particle thermalised with a reservoir at temperature T , we would expect
〈AG〉 ≈ (3/2)kBT , where kB is the Boltzmann constant, and ∆AG ≈

√
3/2kBT . The requirement on the

number of trajectories is then simply N � 1, and we should expect that the relative error is well estimated
by 1/

√
N (so that for 10% relative statistical error, we would require N ∼ 100 trajectories. These same

arguments apply to many-particle systems, we also expect global averages involving all of the particles
in a system (or all of the spins or lattice sites in a spin or lattice system) to be efficiently treatable with
quantum trajectories methods.

For local quantities in a single-particle calculation, the opposite is true. If we try to determine the
population of a given eigenstate (of the Hamiltonian, or of the momentum operator), then we expect that
in a Hilbert space of dimension NH , our local quantities AL and their statistical variance will behave
as 〈AL〉 ∼ 1/NH and σ2

A ∼ 1/NH . As a result, we see that we require N � NH for good statistical
convergence, and there is no advantage in using a quantum trajectories technique over direct integration
of the master equation.

However, for local quantities in many-body systems, the situation is not as clear-cut. If we attempt to
compute the population of a given many-body eigenstate out of NH possible many-body eigenstates, then
the previous conclusion for local quantities in a single-particle system still applies. However, single-particle
or few-particle quantities in a finite-size system that are local in space or momentum will often scale simply
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as the size of the system, L, whereas for large systems with fixed particle density, NH ∝ exp(L). As a
result, quantities such as the local density on one site in a lattice of L sites, or individual elements of
a single-particle density matrix on such a lattice will tend to scale as 〈AS〉 ∼ 1/L and σ2

A ∼ 1/L. We
therefore require N � L for good statistical convergence, and not N � NH . Although this will require
more trajectories for small relative statistical error than in the case of global quantities (by a factor of

√
L),

there are often still large advantages in using quantum trajectory techniques to calculate these quantities
when the size of the Hilbert space NH becomes large.

We will discuss this again below, when we give two illustrative examples for the use of quantum tra-
jectories in section III F. Specifically, in section III F 2, we treat the dephasing of hard-core bosons on a
lattice, and consider calculation of the total energy, local single-particle correlations, and local densities
using quantum trajectory techniques.

D. Physical interpretation

One of the greatest strengths of the quantum trajectories approach to dissipative systems, but also one
of the most subtle points in its usage, is that it gives us a simple physical interpretation for the physics
induced by the environment on the system. The method is also known as the method of quantum jumps,
and the Lindblad operators cm are also called jump operators, inviting the picture of a system that evolves
under the non-Hermitian effective Hamiltonian Heff and then undergoes quantum jumps at certain points
in time. The master equation is then an appropriately weighted stochastic average over all of the different
times at which the jumps could occur, and all of the different types of jumps that can occur.

To see this working in practice, consider a two-level system like that depicted in Fig. 2b. If we drive the
system, coupling the excited and ground states (|e〉 and |g〉) respectively with an effective Rabi frequency
Ω0 and a detuning ∆, then the system will undergo coherent dynamics, interrupted at particular times by
spontaneous emission events, which return the atom to the ground state |g〉, due to the action of a jump

operator c =
√

Γ|g〉〈e|. If photons can be scattered in multiple directions, then the different directions
constitute different channels cm, and we can average over the probability distribution of emission directions.
Note that this is presented carefully below in section V B. The stochastically chosen times for the jumps are
the times at which spontaneous emissions occur, and stochastically sampling different m values amounts
to a stochastic sampling of the direction in which the photon is emitted.

This is a very appealing intuitive picture of the dynamics, and connects strongly with an intuition
of what would happen if we are actually able to measure the environment. Indeed, quantum trajectories
techniques were originally developed by certain groups from studies of photon counting [174], or continuous
measurement [69]. If we are able to make perfect measurements and we see a photon appear in the time
window δt, then we know that a jump has occurred, and that the state of the atom should be projected
on the ground state. On the other hand, if we know that no jump has occurred, then the corresponding
evolution of the system is an evolution under the effective Hamiltonian Heff . Already here, we see a key
piece of physics that will recur multiple times: knowing that no jump has occurred means that we gain
information about the system, just as knowing that a jump has occurred gives us information that the
atom is projected into the ground state.

To see this in a simple example, consider preparing the system in a state |ψ(t)〉 = α|g〉 + β|e〉, where
α and β are complex coefficients, and set Ω0 = ∆ = 0. We can then ask what we expect to happen
in a single step, depending on whether we observe a spontaneously emitted photon or not. As we are
not concerned about the motion of the atom, or therefore about the direction of spontaneously emitted
photons, we can consider a single jump operator c =

√
Γ|g〉〈e|, and an effective Hamiltonian which is

simply Heff = −i(Γ/2)|e〉〈e|. If a jump occurs in a time step δt, then the state after this jump is

|ψ(t+ δt)〉 =
c|ψ(t)〉
‖c|ψ(t)〉‖ = |g〉. (32)

So if there is a spontaneous emission, then the state is projected onto the ground state, as expected.
Consider now what happens if no jump occurs: We then evolve the state as

|ψ(t+ δt)〉 =
exp(−iHeffδt)|ψ(t)〉
‖ exp(−iHeffδt)|ψ(t)〉‖ =

α|g〉+ βe−Γδt/2|e〉
‖α|g〉+ βe−Γδt/2|e〉‖ =

α|g〉+ βe−Γδt/2|e〉√
|α|2 + |β|2e−Γδt

. (33)

In this way, the probability of finding the system in the excited state decreases relative to the probability
of the system being in the ground state, provided α 6= 0. Essentially, through the lack of a spontaneously
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emitted photon, we have gained the knowledge that the system is somewhat more likely to be in the
ground state than in the excited state, and this gain in knowledge is reflected in the relative probabilities
for occupation of these states at time t+ δt relative to time t. Thus, the dynamics are affected by coupling
to the environment even in the absence of actual spontaneously emitted photons.

There are two important cautions to over-interpreting this intuitive physical picture. Firstly, the master
equation can typically be expanded in different sets of jump operators. If there exists a unitary transfor-
mation T in the Hilbert space of the system such that for the dissipative part of the master equation

Lρ = −1

2

∑

m

[
c†mcmρ+ ρc†mcm − 2cmρc

†
m

]
, (34)

the operator T satisfies the condition

T [Lρ]T † = L
(
TρT †

)
, (35)

then we can rewrite each jump operator cm such that we obtain new operators dm = T †cmT , and show
[68] that

Lρ = −1

2

∑

m

[
d†mdmρ+ ρd†mdm − 2dmρd

†
m

]
. (36)

In this sense, the operators dm are equally good choices for the jumps as the operators cm. In general,
for the application of quantum trajectories as a numerical method, we should simply choose the jump
operators that provide most rapid convergence of sampling. This has been investigated in a number of
contexts [68, 203–206], including quantum feedback [207]. However, to ascribe physical meaning to an
individual trajectory it is important to be able to associate the specific jumps with measurable properties
of the environment after the jump. This detector dependence should even produce measurable differences
under certain conditions [208].

In addition, ascribing a pure state to the system as a function of time implies knowledge of measure-
ment results from the environment. Although each trajectory implies a particular physical picture of the
dissipation, it is the average over trajectories that properly specifies our knowledge of the system if we do
not measure the environment. At the same time, there are sometimes means to make a measurement on
the system and infer the measurement result for the environment. A simple case of this type of postselec-
tion appears when the dissipative process we deal with is dominated by particle loss, as we will treat in
section V C below. There, if we know that no particles are lost by making a measurement at the end of
a dynamical process, then we can project the state of the system on the state simply evolved under the
effective Hamiltonian Heff , as this is an equivalent mechanism to measure that no jumps occurred during
the evolution.

In order to address how the approximations that we can make in AMO systems give rise to the behaviour
exhibited by the system, we will re-derive the quantum trajectory approach in appendix A. There we will
make explicit this connection between measurement of the environment and inference of the state of the
system.

E. Alternate formulation for higher-order integration in time

The downside of the method presented in section III B is that it is only first order in the time step δt.
Under some conditions, where the effect of dissipation is much slower than other dynamical timescales for
the system, it might be possible to continue to apply this first order time step for the dissipative dynamics,
but take a step towards higher-order expansions by propagating the state under the effective Hamiltonian
more accurately, i.e., replacing the step |φ(1)(t+ δt)〉 ∝ (1− iHeffδt) |φ(t)〉 with a higher-order version, or
exact computation of |φ(1)(t+δt)〉 ∝ exp(−iHeffδt)|φ(t)〉 (and corresponding normalisation of the resulting
state).

However, this still doesn’t alleviate the problem that the jump takes an entire time step δt, and effective
results in an underestimation of the typical time between jumps of the order of δt. In this way, there is
a systematic first-order overestimation of the rate at which jumps occur. Direct higher-order adjustments
to the method presented in section III B were made by Steinbach et al., [209], allowing calculations of a
Runge-Kutta type up to fourth order.
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A general way to improve the method was originally proposed by Dum et al., [173], in which they
approach the problem from the point of view of continuous measurement, and essentially take the limit
δt→ 0 in thinking about the occurrences of jumps within individual trajectories3.

The revised version of the scheme takes the following form:

1. Sample the initial state and begin the propagation under the effective Hamiltonian as in the scheme
from section III B.

2. Sample a random number r, uniformly distributed between 0 and 1.

3. Numerically solve the equation

‖ exp(−iHefft1)|φ(t0)〉‖2 = r (37)

in order to find the time t1 at which the next jump occurs, given that the previous jump or the
start of the calculation was at time t0. This can be solved using higher order integration methods,
including Runge-Kutta.

4. |φ(t)〉 is then computed numerically in the time interval t ∈ [t0, t1] as

|φ(t)〉 =
exp[−iHeff(t− t0)]|φ(t0)〉
‖ exp[−iHeff(t− t0)]|φ(t0)〉‖ . (38)

5. At time t1, a quantum jump is applied, with probabilities for application of each cm determined as
in step 2 of the method in section III B. That is, we choose a particular m based on the probabilities

δpm ∝ 〈φ(t1)|c†mcm|φ(t1)〉, (39)

and apply the jump as

|φ(t+1 )〉 =
cm|φ(t−1 )〉
‖cm|φ(t−1 )〉‖ . (40)

Here, |φ(t−1 )〉 is the state obtained in step 4 by propagating in time under Heff up to time t1, and
|φ(t+1 )〉 is the state after the jump, i.e., the state we use to continue the time evolution.

6. We now continue the time evolution from step 2, choosing a new random number r.

In this method, jumps occur at a particular point in time, rather than taking a fixed length of evolution
time, and both the times of the jumps and the evolution under the effective Hamiltonian between the
jumps can be solved numerically to arbitrary precision. In this way, we remove the reliance on a first-order
Euler expansion.

F. Illustrative examples

We now give two example applications for quantum trajectories. The first is the simple case of the
optical Bloch equations, which describe a driven two-level atom undergoing spontaneous emissions. While
the underlying master equation is easily tractable, this gives a good basis for our intuition on the meaning
of individual trajectories, and a good example for the calculation of statistical errors. The second example
then provides a lead-in to thinking about many-body dissipative systems by considering the dephasing of a
hard-core Bose gas on a lattice. This system is somewhat more complicated, though analytical experessions
can be found for certain quantities, against which we can straight-forwardly benchmark the statistical error
estimates discussed in section III C.

3 We can’t completely take the limit δt → 0 physically, as we have made important approximations regarding the fact that
we consider dynamics over long timescales compared with ω−1

sys. However, we can take the limit of vanishing δt from the
point of view of numerical implementations after the other approximations have been implemented. See appendix A for a
more detailed discussion.
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1. Optical Bloch Equations

The optical Bloch equations describe a two-level atom that is driven by a classical laser field [198], with
a detuning ∆ between the frequency of the laser field and the atomic transition frequency, as depicted
in Fig. 2b. In the absence of dissipation, this system undergoes Rabi oscillations at a frequency Ω that
depends on the intensity and polarization of the classical laser field, and the dipole matrix elements between
the two internal states {|g〉 and |e〉}. This gives rise to the well-known Rabi Hamiltonian for a spin-1/2
system. In the presence of damping, where an atom can undergo spontaneous emissions, decaying from
the excited state to the ground state, we obtain the master equation

d

dt
ρ = −i[Hopt, ρ]− Γ

2
(σ+σ−ρ+ ρσ+σ− − 2σ−ρσ+) , (41)

where the Hamiltonian

Hopt = −Ω

2
σx −∆σ+σ−. (42)

Here, in the basis {|e〉, |g〉}, we denote the system density matrix ρ and the Pauli matrices as

ρ =

(
ρee ρge
ρeg ρgg

)
, σx =

(
0 1
1 0

)
, σ+ =

(
0 1
0 0

)
, σ− = [σ+]†. (43)

We assume Ω is real for simplicity of notation.
This master equation (the so-called optical Bloch equations) can be expressed in terms of the matrix

elements of the system density operator as

d

dt



ρeg
ρge
ρee
ρgg


 =



i∆− Γ/2 0 −iΩ/2 iΩ/2

0 −i∆− Γ/2 iΩ/2 −iΩ/2
−iΩ/2 iΩ/2 −Γ 0
iΩ/2 −iΩ/2 Γ 0






ρeg
ρge
ρee
ρgg


 . (44)

These equations can be solved exactly, and describe damped oscillations of the system between the two
internal states, damping to an excited state population Pe ≡ ρee

ρee =
1
4 |Ω|2

∆2 + 1
4Γ2 + 1

2 |Ω|2
. (45)

It is straight-forward to formulate the quantum trajectories approach for this master equation, which
contains a single jump operator, c ≡ σ−, and we can write the corresponding effective Hamiltonian as

Heff = Hopt − i
Γ

2
σ+σ−. (46)

The states can be propagated straight-forwardly in time numerically, and we show two example trajectories
in the left panel of Fig. 3. Each of these trajectories exhibits Rabi oscillations, which are interrupted by
spontaneous emissions at points in time that are randomly chosen, and thus vary from trajectory to
trajectory. After each spontaneous emission, the Rabi oscillations in an individual trajectory reappear
with their original amplitude, implying that if we know exactly at which time(s) the atom was reset to
its ground state, then we could predict the exact form of the system state at any point in time. In the
absence of knowledge of these times, the excited state population damps to its steady-state value, which
is marginally below 1/2 for the case of ∆ = 0, Γ � Ω, which we have here. This damping comes from
the incoherent averaging over different trajectories, and averaging over 1000 trajectories reliably predicts
Pe as a function of time up to statistical errors that are less than a few percent of Pe throughout most
of the evolution. This is shown in the right-hand panel of Fig. 3, where the dotted line represents the
exact solution for Pe from the master equation, and the solid line represents the average over trajectories.
The statistical error bars shown here are calculated as discussed in section III C, i.e., from the sample
of Ntraj = 1000 trajectories we compute the population variance of Pe, ∆P 2

e , and compute the error as

σPe
=
√

∆P 2
e /
√
Ntraj.

In order to look into the statistical errors in more detail, we fix the time, and investigate how the
statistical error and the discrepancy between the value of Pe calculated from the trajectory average and
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FIG. 3: Illustrative example of quantum trajectories averaging for a two-level system. (left) Probability of finding
the atom in the excited state Pe as a function of time tΩ for two example trajectories (with blue solid and red
dashed lines showing different random samples). We see the effect of quantum jumps, where the atom is projected
on the ground state. Here the detuning ∆ = 0, and Γ = Ω/6. (right) Values for Pe averaged over 1000 sample
trajectories (Solid line), compared with the exact result from direct integration of the master equation (dotted
line). The quantum trajectories results agree with the exact results within the statistical errors, which are shown
here as error bars calculated as described in section III C.
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FIG. 4: Statistical errors in the quantum trajectories computation for a two-level system. Here we compare the
statistical error estimate (blue solid line) to the absolute error in the averaged value of Pe when compared with the
exactly computed value (red dashed line) at a time tΩ = 40. We show these values as a function of the number of
trajectories over which we average, with all quantities plotted on a logarithmic scale. As expected, the behaviour
of both the statistical error and the discrepancy is somewhat erratic for small numbers of trajectories, but decrease
steadily ∝ 1/

√
N for larger numbers. The absolute error is mostly below the statistical error estimate, consistent

with a gaussian distribution of possible errors with a standard deviation equal to our statistical error estimate.
Note that these values depend on the particular random sample of trajectories obtained in the calculation. From
the central limit theorem and the properties of Gaussian distributions that for any given computed values, we
expect the absolute error to be smaller than the statistical error as it is quoted here for 68.2% of all possible
samples.

the exact value obtained from the master equation vary with Ntraj. This comparison is shown in Fig. 4,
where the solid blue line represents the statistical error, and the dashed red line the discrepancy between
the trajectory average and the exactly computed value as a function of the number of trajectories. Each
of these lines is shown on a double logarithmic scale to make the scaling ∝ 1/

√
N clearer. The lines shown

in the figure represent a particular sample of trajectories, and were chosen so that we simply grew the
sample as we increased Ntraj. Naturally, we expect that different samples will produce different plots, but
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the results shown here constitute a typical example. From the central limit theorem, as described in III C,
we expect the means over different samples of trajectories to be approximately normally distributed, and
the statistical error represents the standard deviation of that distribution. Thus we expect 68.2% of all
possible samples to have discrepancies to exact values that fall below the quoted statistical error. The
small ranges of sample sizes where the discrepancy is marginally larger than the estimated statistical errors
are perfectly consistent with this analysis.

2. Dephasing for hard-core lattice bosons

Our second example focusses on a gas of hard-core bosonic particles moving on a lattice, and introduces
dissipation in a simple many-body system. We begin by considering a 1D Hamiltonian of the form

Hbos = −J
∑

l

a†l+1al + a†l al+1, (a†l )
2 ≡ 0, (47)

where al is a bosonic destruction operator for a particle on lattice site l, J is the tunnelling amplitude for
a particle moving between sites in a 1D chain, and we have introduced a hard-core constraint, that is, we
allow at most one particle on each lattice site. As will be discussed in more detail in sections IV and V
below, bosonic atoms confined to the lowest band of an optical lattice [74–76, 210, 211], the system are
described under well-controlled approximations by the Bose-Hubbard model,

HBH = −J
∑

〈i,j〉
a†iaj +

U

2

∑

i

a†iai(a
†
iai − 1), (48)

where U is the on-site interaction energy shift, and 〈i, j〉 denotes a sum over nearest-neighbour sites. The
model represented by Hbos is a limiting case of this when atoms are confined to move along one lattice
direction in an optical lattice setup [74, 75, 211], and where the particles are very strongly interacting
U/J →∞ so that energy conservation strongly disfavours doubly-occupied lattice sites. At less than unit
filling of particles in lattice sites, the ground state of Hbos is a bosonic superfluid, in which the tails of the
momentum distribution decrease algebraically with increasing momentum. The properties of this gas can
be derived straight-forwardly via a Jordan-Wigner transformation [212], which allows the solution to be
expressed in terms of the properties of a gas of non-interacting Fermions.

Below, in section V B, we will discuss how undergoing spontaneous emissions, i.e., incoherently scat-
tering light from the lattice lasers or another source, tends to localise particles in the system, providing
the environment with information about the location of the particles. In the typical limit for optical
lattice experiments, this localisation essentially projects a particle onto a single lattice site (although we
typically cannot or do not measure which site this was). This localisation in space delocalises the atom
in quasi-momentum space across the first Brillouin zone, leading to a broadening of the quasi-momentum
distribution and an increase in the kinetic energy beginning from the ground state. For hard-core bosons
in 1D, these processes can be approximately described by the master equation

d

dt
ρ = −i[Hbos, ρ]− Γ

2

∑

l

(
a†l ala

†
l alρ+ ρa†l ala

†
l al − 2a†l alρa

†
l al

)
, (49)

where Γ is the effective rate of spontaneous emission events.
As in the case of the optical Bloch equations, it is straight-forward to formulate the quantum trajectories

approach for this master equation. Now we have a set of jump operators, with as many jump operators as
we have lattice sites in the system and cm ≡ a†mam, i.e., the on-site number operator, and a corresponding
effective Hamiltonian

Heff = Hbos − i
Γ

2

∑

m

a†mama
†
mam. (50)

Intuitively, this form for the jump operators makes sense, as application of a number operator on a given

site, a†l al|ψ〉/‖a
†
l al|ψ〉‖, leads to the localisation of a single particle on site l. The probability that this

occurs on a particular site l is proportional to the expectation value 〈(a†l al)2〉, which reflects the fact that
a site that is unoccupied will not give rise to jumps, and for particle numbers greater than one, the rate is
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FIG. 5: Illustrative example of quantum trajectories averaging for a gas of hard-core bosons on a lattice, analogous
to the example for a two-level system in Fig. 3. Here we show results from exact diagonalisation calculations with 5
particles on 10 lattice sites. (left) Kinetic energy of the system of hard-core bosons as a function of time tJ for two
example trajectories (with blue solid and red dashed lines showing different random samples). We see the effect of
quantum jumps, where the kinetic energy increases as individual atoms are localised in space, and hence spread
over the Brillouin zone in quasi-momentum. Here the scattering rate Γ = 0.1J . (right) Values for the kinetic
energy averaged over 1000 sample trajectories, compared with the exact result from eq. (51). As in the case of the
two-level system, the quantum trajectories results agree with the exact results within the statistical errors, which
are shown here as error bars calculated as described in section III C.

enhanced by superradiance [213, 214]. We will see below that this enhancement is related to the excitation
of a collection of atoms in one site being symmetric.

The localisation of an atom on a single site corresponds to a spreading of the localised particle over all of
the possible states in quasimomentum space, and hence to an increase in kinetic energy. This can be seen
in Fig. 5, where we propagate states in time numerically using quantum trajectories. As for the previous
case of the optical Bloch equations, we show two example trajectories as well as a trajectory average, here
for the kinetic energy in the system as a function of time. By direct computation of expectation values
from the master equation, we see that

d

dt
Ebos ≡

d

dt
〈Hbos〉 = −Γ〈Hbos〉, (51)

so that Ebos(t) = Ebos(t = 0) exp(−Γt). In the right hand panel of Fig. 5 we compare this analytical result
to the numerical value as a function of time, and observe very good agreement to within the estimated
statistical error.

We investigate this statistical error as a function of the number of trajectories in Fig. 6. We fix the
time at tJ = 8, and plot the statistical error and the discrepancy between the value of Ebos calculated
from the trajectory average and the exact value obtained from the master equation as a function of Ntraj.
The solid blue line represents the statistical error, and the dashed red line the discrepancy between the
trajectory average and the exactly computed value. From the double logarithmic scale we see the scaling
∝ 1/

√
N . As in the example of the optical Bloch equations, we expect the means over different samples of

trajectories to be approximately normally distributed, and therefore 68.2% of all possible samples should
have discrepancies to exact values that fall below the estimated statistical error. The values shown here
are again consistent with that analysis. In addition to this data, we also show using lighter (green) solid

and dashed lines the same analysis for a local correlation function 〈(a†5a6 +a†6a5)〉. We see that the relative
error is higher than for the globally averaged value, but the behaviour of the local correlation function
with the number of trajectories is very similar.

In Fig. 7 we show additional data for another local correlation function, namely the on-site density. This
is quite instructive, because it shows how individual trajectories need not exactly enforce symmetries that
are present in the master equation as a whole. Specifically, for a system with periodic boundary conditions
and an initial density that is uniform across the system, we expect that

d

dt
〈a†l al〉 = 0. (52)
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FIG. 6: Statistical errors in the quantum trajectories computation for hard-core bosons, taken from exact diago-
nalisation calculations with 5 particles on 10 lattice sites. Analogously to the two-level system case, we compare
the statistical error estimate for our estimate of the energy Ebos (dark blue solid line) to the absolute error in
the averaged value of Ebos when compared with the exactly computed value (dark red dashed line) at a time

tJ = 8. We also show the estimate of the error in a local correlation function 〈(a†5a6 + a†6a5)〉 (light green solid
line) compared with the discrepancy between this quantity and the exactly value (light green dashed line) at the
same point in time. We show each of these these values as a function of the number of trajectories over which we
average, with all quantities plotted on a logarithmic scale. The statistical errors again decrease steadily ∝ 1/

√
N

for larger numbers, but the relative error in the local quantity remains larger than the global quantity.

0 2 4 6 8 100.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tJ

n
5

0 2 4 6 8 100.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

0.525

tJ

〈n
5
〉

 

 

1000 trajectories
Exact

FIG. 7: Illustrative example of quantum trajectories averaging for a gas of hard-core bosons on a lattice, showing
results from exact diagonalisation calculations with 5 particles on 10 lattice sites, as in Fig. 5. (left) Density on site
5 of the lattice as a function of time tJ for two example trajectories (with blue solid and red dashed lines showing
different random samples). We see the effect of quantum jumps, where nearby jumps give rise to fluctuations
either up or down of the local mean density. (right) Values for 〈n5〉 averaged over 1000 sample trajectories, and

compared with the exact result, which is 〈n5〉 ≡ 〈a†5a5〉 = 0.5, because the equations of motion are homogeneous.
We see that the deviation from this value is well approximated by the statistical errors, shown here as error bars
calculated as described in section III C.

However, because the individual jumps are local, the spatial invariance in the expectation value of the
density is not followed by individual trajectories, as we see clearly in the left panel of Fig. 7. This reflects
an analogous lack of spatial invariance that might occur in specific runs of an experiment if spontaneous
emission events are taking place locally (see appendix A for an interpretation of this in terms of physical
processes occurring on individual lattice sites). In the right panel of Fig. 7, we see that the expectation
value of the density remains constant to within the statistical errors, as is expected.

In Sec. V B we return to this problem of spontaneous emissions, outlining the derivation of this master
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equation for many bosons in an optical lattice, also away from the approximations that are made here.
We also explain the additional dynamics (including transfer of particles to higher Bloch bands) that are
exhibited in that case, and we explain the limits in which the simplified master equation treated here
arises.

IV. INTEGRATION OF QUANTUM TRAJECTORIES WITH MANY-BODY NUMERICAL
METHODS

Over the last few years, several groups have begun applying these techniques to describe dissipative
dynamics of many-body systems as they arise in AMO systems. A number of examples of such master
equations will be given in section V, beginning with a general version of the light scattering master equation
discussed in section III F 2. In order to facilitate the solution of the corresponding master equations,
quantum trajectories techniques have been combined with many-body methods. In this section we give
an overview of what has been done so far, beginning with exact diagonalisation and mean-field methods,
and then describing in detail the integration of quantum trajectories with time-dependent density matrix
renormalisation group (t-DMRG) techniques.

A. Integration with exact diagonalisation

For systems that are not too large, we can store the many-body states exactly, and apply quantum
trajectories methods in much the same way as they would be applied to single-particle systems. We only
need a method to propagate a state under the effective Hamiltonian Heff , and apply jump operators. The
main difference in applying this method to many-body systems, as opposed to single-particle systems,
is that quantum trajectories can be an efficient way to compute quantities that are local in space or
momentum in these systems, because the Hilbert space is large compared with the system size. This
was discussed in more detail in section III C 2 above. In most quantum trajectories involving t-DMRG
techniques, the dynamics are first studied for a small system that is tractable to exact diagonalisation
(see, e.g., [104, 116]). In the case of the Bose-Hubbard model eq. (48), such systems are of the order of 10
particles on 10 lattice sites for rapid computations, although recent calculations with the Bose-Hubbard
model (without quantum trajectories) have extended to 14 particles on 14 sites [215, 216].

One important optimisation that quantum trajectories can allow involves conserved symmetries of
the effective Hamiltonian. Specifically, if the Hamiltonian commutes with a unitary transformation T̂ ,
[Heff , T̂ ] = 0, it is usually possible to optimise a calculation by working in one symmetry sector of T̂ ,

reducing the number of basis states that must be used for the Hilbert space. In the case that [cm, T̂ ] 6= 0,
this is not typically the case for a full master equation simulation. However, in a trajectories calculation,
if [cm, T̂ ] ∝ cm, it is still possible to make use of the symmetry in reducing the relevant basis size for the
Hilbert space, because the application of a jump simply switches the state from one symmetry sector to
another. A simple example is the case of particle loss in a many-body system [104] (see section V below).
Often, the effective Hamiltonian commutes with the total particle number operator, and we can work in
a basis with fixed particle number. Loss events reduce this number by a well controlled amount, allowing
a different number conserving basis to be used for propagation after the jump [104].

B. Integration with the time-dependent Gutzwiller ansatz

This discussion applies equally to mean-field methods that make it possible to rewrite the dynamics so
that it is exactly computable. An important example of this for bosons on a lattice is the possibility to
perform time-dependent calculations with a Gutzwiller ansatz [210, 217–219]. In calculating ground states
of the Bose-Hubbard Hamiltonian, this ansatz takes the form of a product state over different lattice sites,

|ψG〉 =
∏

l

|ψlG〉[l] =
∏

l

∑

n

f (l)
n |n〉[l]. (53)

Here, |n〉[l] is a state of n particles locally on site l, and f
(l)
n can be used as variational parameters

to minimise the energy. For the Bose-Hubbard model HBH , this is equivalent to using a mean-field

approximation on the operators al in the tunnelling part of the Hamiltonian, a†iaj → a†i 〈aj〉 + 〈a†i 〉aj −
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〈a†i 〉〈aj〉, which leads to a Gutzwiller mean-field Hamiltonian that can be expressed as a sum over terms
involving only local operators on site l,

HMF =
∑

l

[
−J

(
ψla
†
i + ψ∗l al

)
+

1

2
U(a†l )

2a2
l

]
. (54)

Here, ψl ≡
∑
j|l〈ψ

j
G|aj |ψjG〉 involves a sum over the sites j that are immediate neighbours of site l, and

in variational calculations these parameters must be found self-consistently. As a method of determining
the ground state, this method faithfully reproduces states for weak interactions [220], and is exact in the
limit of infinite dimensions[221–223]. In this form, the superfluid phase of the Bose-Hubbard model, which
is characterised by off-diagonal long-range order [212], is represented by a nonzero value of ψl, whereas
for the Mott Insulator state, ψl = 0. For unit filling on the lattice, this transition from the superfluid
phase to the Mott Insulator phase in this ansatz occurs at U/(zJ) ≈ 5.8 [212], where z is the number
of neighbouring sites. This value is accurate for a 3D cubic systems to about 15%, when compared with
results from Quantum Monte Carlo calculations [224].

These methods can be directly generalised to time-dependent calculations [210], and have been seen to
give reasonable qualitative results in a number of contexts [217–219]. Because these calculations involve
direct evolution of on-site wavefunctions under the mean-field Hamiltonian, they are efficient to compute
numerically. Care must be taken, as there are some cases where the method clearly fails - for example,
no dynamics can be generated when the initial state is a Mott Insulator state, as in this case the terms
in HMF that couple sites are exactly zero. This also leads to artefacts and unphysical slowing down in
studying time-dependent transitions from the superfluid to Mott Insulator phase. However, these methods
can be very useful in developing understanding of systems in a tractable manner.

Because dynamics are efficiently computable, these methods can be used directly together with quantum
trajectory techniques. The averages are then performed over an ensemble of stochastically evolved states,
where each state of the ensemble has the Gutzwiller ansatz form of eq. (53).

An alternative Gutzwiller ansatz form for solving a master equation was used by Diehl et al. in Ref. [136].
This involved a factorisation of the system density operator,

ρG =
⊗

i

ρi ρl = Tri 6=l{ρ} (55)

which gives rise to a nonlinear set of coupled master equations, each for one site l. This ansatz is particularly
useful in certain cases where it can be treated analytically [136], and can also be useful as a numerical
method to obtain certain qualitative effects (see, e.g., [81], where this method was used to study transfer
of particles to higher bands of an optical lattice in spontaneous emission events).

It is important to note that where sampling an ensemble of trajectories in the Gutzwiller ansatz form
|ψG〉 can actually contain somewhat more information than ρG. While neither ansatz can represent
quantum entanglement between different sites, by making a product state of local density operators, ρG
also does not capture the development of non-trivial classical correlations between different parts of the
system. However, classical correlations can be captured by an ensemble of trajectories in the form |ψG〉
(each trajectory has no classical correlations, but the ensemble of trajectories can represent these). This
can be important not only in treating dissipative dynamics with quantum mechanical reservoirs, but also
when sampling over classical noise within such an ansatz, as was observed in Ref. [85].

C. Time-dependent density matrix renormalization group methods

An important development in treating dissipative dynamics of many-body systems has been the advent
of time-dependent methods for dealing with 1D many-body systems. We will briefly summarise the key
features of these methods in this section, and then discuss their integration with quantum trajectories
methods4.

Over the last ten years, a range of methods based on matrix product states [225] have been developed,
which effectively build on the success of density matrix renormalization group (DMRG) methods [226, 227]

4 For a more detailed review of these methods, see, e.g., Ref. [225].
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FIG. 8: Diagram comparing a product state and a matrix product state. Each square represents a state |ψl〉[l] in a
local Hilbert space Hl, e.g., a single spin or lattice site, and the vertical leg on each square box indicates an index
for the states of the local Hilbert space. The Hilbert space representing the whole system is the tensor product
H = H1 ⊗ H2 ⊗ . . . ⊗ HL. A product state can be written as |ψ1〉[1] ⊗ |ψ2〉[2] ⊗ . . . ⊗ |ψL〉[L], and represents a
quantum state with no entanglement between any two local Hilbert spaces. By multiplying out D×D matrices, a
matrix product state makes it possible to represent superpositions of product states, and this superposition contains
entanglement between the local Hilbert spaces. For sufficiently large D, any state can be represented in this way,
and the ground states of large classes of local 1D many-body Hamiltonians can be represented faithfully for small D
in this fashion. This is the basis of the time-dependent density matrix renormalization group method, as discussed
in the main text. The maximum amount of entanglement we can represent across any bipartite splitting in the
system is bounded in terms of the von Neumann entropy by SvN ≤ log2 D. Note that while each square box here is
a similar notation to that used in Ref. [225] and similar references, in the notation of those references, contractions
between matrices are represented by connecting boxes with horizontal lines.

as the most powerful numerical method for generic lattice models in one dimension. Early development of
time-dependent methods has included the time-evolving block decimation (TEBD) algorithm [228, 229],
and its integration with DMRG to produce an adaptive time-dependent DMRG (t-DMRG) algorithm
[230, 231]. Similar methods based on matrix product operators have been developed [232–236], which
allow for both the study of time-dependent dynamics with long-range interactions [234], and the direct
study of dissipative dynamics described by a master equation, with matrix product states used to represent
a density matrix [236, 237]. Such density matrix representations can be used to represent finite-temperature
states [233, 236], though finite temperature dynamics alone (without dissipative processes) can also be
represented by use of ancilla states [238], or by sampling minimally entangled states [239]. Generalisations
have been proposed to higher dimensions [240, 241], although these are typically very computationally
intensive.

Matrix product state methods can be applied to any system for which we can write the Hilbert space
as a product of local Hilbert spaces, H = H1⊗H2⊗ · · ·⊗HL. This works well for spin chains, where each
local Hilbert space Hi corresponds to the states of a single spin, as well as for bosons or fermions on a
lattice, where each local Hilbert space corresponds to the different possible occupations of particles on a
single lattice site. If we write the d basis states of the local space Hl as |il〉[l], il = 1 . . . d, then any state
|ψ〉 of the complete system can be expressed in the form

|ψ〉 =

d∑

i1,i2,...,iL=1

ci1i2...iL |i1〉[1] ⊗ |i2〉[2] ⊗ . . . .⊗ |iL〉[L]. (56)

The key to matrix product state methods is a decomposition of the state in which we write ci1i2...iL from
this equation as the multiplication of a series of matrices Al[il],

ci1i2...iL = A1[i1]A2[i2] . . . AL[iL], (57)

where the boundary matrices are assumed to be one-dimensional in order to produce coefficients from the
matrix multiplication.

This state is represented in the diagram of Fig. 8, where we visualise the basic concept of a matrix
product state. If the matrices were just complex coefficients (i.e., matrices of dimension D = 1), then
this state would be precisely the same as the Gutzwiller ansatz state eq. (53) described in the previous
section. It would be a product state, with a simple physical interpretation, and no entanglement between
any of the local Hilbert spaces. However, by using matrices of dimension D × D, where D > 1, we can
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produce a superposition of different product states, in so doing, allowing entanglement between different
local Hilbert spaces. For sufficiently large D, any state can be represented in this form, but in general D
must grow exponentially with the system size in order to represent an arbitrary state of the Hilbert space
D ∝ exp(L). In fact, to represent an arbitrary state of the form given in eq. (56), and L is even, then we
must have matrices at the centre of the system of dimension D = dL/2.

The key to the success of these methods comes in the understanding of entanglement in many-body
systems, which has developed extensively in the past few years [242–247]. For a system where the total
state of the system is a pure state ψ, the entanglement between two parts A and B can be quantified by
computing the von Neumann entropy SvN[ρA] = −Tr[ρA log2 ρA] of the reduced density operator for one
part of the system ρA = TrB [|ψ〉〈ψ|]. If the two parts are in a product state, then the reduced density
operator ρA will represent a pure state, and we have SvN[ρA] = 0. However, if the parts of the system
are entangled, ρA will represent a mixed state, and its entropy gives the quantification of the amount of
entanglement between A and B.

In a matrix product state with matrix dimension D, the maximum entanglement across any possible
bipartite splitting in the system that can be represented by this state is SvN = log2(D). However, if we
take a bipartite splitting of a gapped lattice model or spin chain in 1D, then we expect SvN to be bounded
as a function of the size of each part of the system A and B, even as we extrapolate to unbounded block
size in an infinite-sized system [242–244]. If, on the other hand, we have a 1D system that is critical,
then we expect SvN ∝ log(Ls), where Ls is the size of the smaller block, A or B [242, 244]. In either
case, the entanglement is in some sense weak, and for finite-size systems it is reasonable to expect that
“slightly-entangled” matrix product states will represent the states well. While the scaling of the von
Neumann entropy is a practical guide, and in fact the scaling of Rényi entropies SR ≡ (1−R)−1Tr[ρR] of
order R < 1 should be considered in order to prove that a state can be represented in this form [248, 249],
it is found that these methods work very well under a wide range of circumstances. In fact, it has been
shown [250] that ground states of 1D spin systems are expected to be represented faithfully in this form,
even at criticality, and the success of DMRG as an essentially exact method for the computation of ground
states of 1D systems is practical confirmation of this [225, 226].

Time-dependent methods can be readily developed, as it is straight-forward to apply either local op-
erators or even long-range operators that are representable in matrix operator form to these states. In
particular, applying an operator to two neighbouring sites can be done while only updating the matrices
associated with those sites. Then, a simple method to compute time evolution for a local Hamiltonian
Ĥ =

∑
l Ĥl,l+1 is to take a Trotter decomposition of the time evolution operator,

e−iĤ(2δt)/~ = e−i
∑

l Ĥl,l+1δt/~ ≈
L−1∏

l=1

e−iĤl,l+1δt/~
1∏

l=L−1

e−iĤl,l+1δt/~ +O(δt3), (58)

where each of these operators can be applied to the state by updating only the matrices associated with
those sites. This can be straight-forwardly generalised to higher-order Trotter decompositions [251], and
a variety of other methods for efficiently propagating the state, especially Arnoldi methods [232, 252] are
also available. In each case, the numerical cost of propagating the state scales as D3.

For how long a state can be accurately propagated in time using these methods depends on the rate
of growth of entanglement during the time-evolution. For cases where the evolution is somewhat close
to equilibrium, dynamics on very long timescales can be computed. For example, near-adiabatic state
preparation has been studied in Hubbard models on timescales longer than 2000J−1 [253]. However,
general time evolution under a Hamiltonian for which the matrix product state is not a near-equilibrium
state can only be computed over short timescales [248, 249, 254–256]. This is directly related to the
growth of entanglement after a quantum quench [254, 255, 257–259]. A simple picture for how this works,
which can be clearly seen in the case of nearest-neighbour transverse Ising model [257] is depicted in Fig. 9.
There, we show the propagation in time of quasiparticle excitations, which carry information at a rate that
is limited by the Lieb-Robinson velocity [260]. Propagation of quasiparticles across a boundary between
two parts of the system leads to an increase in spatial entanglement between those parts of the system.
In the generic case [248, 249, 257], this leads to a linear growth in the entanglement entropy as a function
of time. This has been investigated in a variety of different models, including the Bose-Hubbard model
[258, 261].

As an example of this, in Fig. 10, we plot the entanglement across a bipartite splitting the middle of
the system as a function of time after a quench in the Bose-Hubbard model. The quench is from a Mott
Insulator state in 1D at unit filling, with an initial ground state at U/J = 10, and a quench to U/J = 1.
The linear growth of the entanglement entropy is clearly seen, as is the ability of t-DMRG methods to
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FIG. 9: After a local or global quench in a 1D system with short-range interactions, quasiparticle excitations are
produced that propagate through the system. The rate of information propagation in the system is restricted
by the Lieb-Robinson velocity. When we consider a bipartite splitting of the system (here into parts A and B),
propagation of quasiparticles across the boundary leads to an increase in spatial entanglement between parts A
and B of the system.
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FIG. 10: Increase in entanglement as a function of time after a quantum quench in the Bose-Hubbard model. Here
we consider a quench in the Bose-Hubbard model eq. (48) from U = 10J to U = J in a system with 30 particles on
30 lattice sites, initially in the ground state with U = 10J . Making a bipartite splitting in the centre of the system
(with 15 sites on each side), we compute the von Neumann entropy increase as a function of time using t-DMRG
methods with varying values of D. We see clearly the bounds in SvN imposed by different values of D, which are
indicated with dotted horizontal lines, as well as clear convergence of the results at short times to the exact value
as we increase D. Adapted from A. J. Daley, H. Pichler, J. Schachenmayer, and P. Zoller, Phys. Rev. Lett. 109,
020505 (2012).

capture the quench dynamics only so long as the entanglement remains less than log2D. Because we
require a matrix size D > 2SvN to represent the entanglement in the system, and because the numerical
cost scales as D3, we see that the cost of the algorithm grows exponentially in order to simulate this further
in time. For reference, in this computation, a computation on a single CPU core required several days for
D = 512. It has been recently discussed that measurement of such entanglement growth in experiments
could be a good way to characterise the behaviour of a quantum simulator in a regime that goes beyond
what is currently computable on classical computers [261–267].

In practice, the practical procedure employed when using t-DMRG methods is to fix an allowed trun-
cation error value εT for the propagation of the state in each time step. We then ensure that D is chosen
to be large enough so that this error is small in each time step, in an analogous manner to the control
of other such errors in numerical computations. The error εT we define by considering the exact state
|Ψ〉, that would be produced via application of the time evolution operator exactly on the matrix product
state we had at the beginning of the time step, and comparing this with the nearest matrix product state
representation with dimension D to this state, |ΨMPS,D〉. Specifically, we define |〈Ψ|ΨMPS,D〉|2 ≡ 1− εT ,
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FIG. 11: Six example trajectories showing time-dependent DMRG simulations of the dynamics of 48 bosons on 48
lattice sites in a master equation with H = HBH eq. (48), and jump operators cm = a†mam, and γ = 0.02J . Here
we investigate the increase in the difficulty of the simulation as a function of time by plotting the von Neumann
entropy across a splitting in the centre of the system (with 24 sites on each side). We see that there are different
delays to the increase in SvN, which depend on the timing of quantum jumps as well as their location with respect
to the point of the bipartite splitting. All of these trajectories are exact calculations (t-DMRG truncation errors
εT lead to errors in SvN that are smaller than the line thickness), with D = 256.

where we compute the square of the inner product between |Ψ〉 and |ΨMPS,D〉. We then require that
1 − εT ≈ 1, and we can perform systematic convergence tests in εT , or in some cases where it is well
controlled, even extrapolation to εT → 0. This naturally involves performing calculations with increasing
matrix size D.

On a practical level, the size of the the matrix D depends on the particular system being investigated,
and the length of time over which the dynamics are computed. Typical calculations often involve several
hundred to several thousand time steps, with D ∼ 200–2000. A calculation with a small local Hilbert
space of 2–5 states and D ∼ 500 takes of the order of a day on a single Intel Ivy Bridge processor
core. A significant computational advantage of quantum trajectory techniques is that with access to a
large computational cluster, the methods can be immediately parallelised as each trajectory can be run
independently.

D. Integration of quantum trajectories and t-DMRG methods

Integration of quantum trajectories with t-DMRG methods is somewhat straight-forward in so far as
t-DMRG provides a direct means to propagate the state under the effective Hamiltonian Heff , or to apply
jump operators cm to the state. Initial states can be directly constructed or computed if they are pure
states, or known mixtures of pure states, and finite temperature states could also potentially be sampled as
minimally entangled thermal states [239]. We can then implement the protocol from section III E directly
within this formalism [104]. In computing the norm of the state as a function of time, it is usually best
to ensure that the state stored in a matrix product state is always normalised. If a Trotter decomposition
is used to compute the time evolution, for example, it is often useful to renormalize the state stored in
memory after every application of local evolution operators (58) to the state. The required normalisation
factors can be stored separately in memory and used to compute the norm of the state for the purposes
of the protocol in III E.

A key test for these out of equilibrium calculations is to perform convergence tests in the truncation
error εT for each individual trajectory. It is typically sufficient to perform convergence tests for a small
representative sample of the trajectories, because the behaviour of the entanglement growth in the system
and the related growth in εT generally depends on the type of dynamics being induced by the quantum
jumps. Care should be taken with this, because jumps effectively produce quantum quenches (often local
quantum quenches [86]), which can lead to an increase in entanglement.

As an example of the entanglement growth after quantum jumps, in Fig. 11, we plot example values
of the von Neumann entropy in the centre of a system as a function of time for bosons on an optical
lattice with light scattering in the form discussed in section III F 2. We show six trajectories that are
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representative of relatively typical behaviour, and we can see how the difficulty of the simulation increases
with time. Note that there are different delays to the increase in SvN, which depend on both the timing
of quantum jumps and also their location with respect to the point of the bipartite splitting. It should
be noted that for local jumps, it can be favourable numerically to use different matrix dimensions D for
different matrices along the chain, in order to keep a fixed value of εT . This is especially straight-forward
when using a Trotter decomposition eq. (58) and applying local time evolution operators. In general, jump
operators that are local in space, and so provide a local quench for the system should lead to a slower
entanglement growth than global quenches [268], which should favour the use of quantum trajectories
methods to describe the resulting dynamics.

As with the case of exact diagonalisation methods, matrix product state methods can be substantially
optimised by restricting the values that are stored to particular symmetry sectors. This was long used as a
means of optimising states in DMRG [226]. Because of this, the added numerical advantages of quantum
trajectories over density matrix propagation arising from additional symmetries present in the evolution
of individual trajectories apply to t-DMRG methods in the same was as was discussed in section IV A for
exact diagonalisation methods. In Ref. [104], calculations were performed for master equations describing
three-body loss using quantum trajectories methods. In that case, the calculation of each trajectory was
optimised by making use of a U(1) symmetry corresponding to total particle number conservation, because
at each point in the evolution, each trajectory can have a fixed total particle number, even though this
can change in time. Note that optimisation to such symmetries also provides a good choice when there is
a freedom in choosing the jump operators in the way described in section III D.

As mentioned above, there is also an alternative way to compute dynamics of open quantum systems
(as described, e.g., by a master equation for the density matrix), by using matrix product state to encode
a density matrix directly [236, 237]. We can, e.g., replace states by density matrices and operators
by super-operators. The dimension of the local Hilbert space then increases from d to d2. Whether
such representations or quantum trajectories methods using stochastically propagated pure states is more
efficient depends strongly on the particular problem being solved, and is still an area of ongoing research.
In comparing the two methods it is important to make several general remarks.

Firstly, the most clear trade-off for the density matrix approach vs. quantum trajectories is that in
the density matrix approach the local dimension of the Hilbert space must be increased (giving rise to a
computational cost increase that is usually of the order of d3) whereas in the quantum trajectories case
it is important to sample sufficient numbers of trajectories in order to obtain accurate statistics for the
quantities that are being computed. Given that the number of trajectories required for computation of
global few-body correlation functions with a relative accuracy of a few percent tends to be of the order
of several hundred, the density matrix approach could have advantages, especially in the case that the
local Hilbert space dimension is small (e.g., d = 2 for a spin-1/2 chain). This advantage is much less clear
for lattice models, especially Bose-Hubbard models with potentially large on-site occupation, or ladder
systems. For the Fermi Hubbard model on a two-leg ladder, for example, it is typical to take d = 16.

Secondly, and perhaps more importantly, the matrix size D required to solve the problem will depend
strongly on the details of the problem. For a density matrix representation, the matrix dimension D has to
be increased in order to allow for classical correlations to be represented as well as quantum entanglement.
This is directly analogous to the mathematics leading to a lack of classical correlations in the Gutzwiller
ansatz-type density matrix representation presented in section IV B. Often, this will mean that D will
have to be much larger for an accurate representation of the state in a density matrix form directly than
would be required for states propagated in a quantum trajectories formalism. There is one important
caveat for this: If the state becomes substantially mixed, then by propagating pure states, we can end up
having more quantum entanglement represented than would be required for a mixed state representation
of the same dynamics. One avenue of research for the future is the question of how to optimise the choice
of jump operators (as discussed in sec. sec:physicalinterp) in order to produce pure states in a quantum
trajectories formulation that would minimise the amount of entanglement generated in time.

As a general rule, short-time dissipative dynamics that begin with a pure state are straight-forwardly
described by integrating t-DMRG with quantum trajectories [104, 116, 124]. Several examples of the use
of quantum trajectories integrated with t-DMRG to describe open many-body systems in an AMO context
are described in the next section.
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V. OPEN MANY-BODY AMO SYSTEMS

As we discussed above, the study of strongly interacting AMO systems has made it possible to realise
open many-body quantum systems in which the usual quantum optics approximations apply. This makes it
possible to have microscopically well-controlled models for many-body systems in an analogous form to the
single-particle models of quantum optics. In this section, we give several examples, focusing initially on cold
quantum gases in optical lattices [74–76, 210, 211], where we begin with a discussion of the corresponding
microscopic models before presenting an overview of dissipation due to light scattering and due to particle
losses. We then discuss dissipative state preparation in this system, as well as corresponding experiments
with other experimental systems, including trapped ions, Bose-Einstein condensates in an optical cavity,
and Rydberg atoms.

A. Microscopic description for cold quantum gases and quantum simulation

A key starting point for a lot of recent progress with ultracold atomic gases is the possibility to realise
microscopically well controlled models for strongly interacting systems, and to manipulate the parameters
of those models via external fields. This comes about because the atomic physics associated with magnetic
and optical trapping potentials is very well understood [36, 269], and for the experimentally relevant limit of
dilute gases, inter-particle interactions are dominated by two-particle interactions. Moreover, because the
collision energies of atoms are very small, the scattering (which typically involves complicated interatomic
potentials with many bound states) reduces to a universal regime where the behaviour can be described by
a single parameter, the s-wave scattering length ascatt [270][271]. Moreover, when ascatt is small compared
with typical scattering momentum scales, we can make a Born approximation for the scattering. For
cold bosonic atoms, we then write the well-controlled microscopic Hamiltonian in terms of bosonic field

operators5 ψ̂(r) that obey
[
ψ̂(x), ψ̂†(y)

]
= δ(x− y) as:

Ĥatoms ≈
∫
d3r ψ̂†(r)

[
− ~2

2m
∇2 + V0(r)

]
ψ̂(r) +

g

2

∫
d3r ψ̂†(r) ψ̂†(r) ψ̂(r) ψ̂(r), (59)

where m is the atomic mass, g = 4π~2ascatt/m, V0(r) is the effective single-particle potential (generated
by external magnetic fields and optical traps).

Not only is this model well-understood microscopically, but experiments offer precise time-dependent
control, both over V0, through external magnetic fields and optical traps based on the AC-Stark Shift
[36, 269], and over ascatt, through optical and magnetic Feshbach resonances [272]. While the gas described
here is in principle weakly interacting, Feshbach resonances can be used to increase the interaction strength
towards a strongly interacting regime. Alternatively, even while maintaining values of ascatt ∼ 100a0, where
a0 is the Bohr radius, we can achieve a strongly interacting system by loading atoms into an optical lattice
potential, formed via the AC-Stark shift with standing waves of laser light. Because the temperature and
energy scales can be straight-forwardly made much smaller than the bandgap in an optical lattice potential
[210], this makes it possible to directly realise simple lattice models for atoms in a single band of an optical
lattice, such as the Bose-Hubbard model eq. (48), or extended versions of this that allow for additional
confinement and/or superlattice potentials in the form

HBH+ = −J
∑

〈j,l〉
a†jal +

U

2

∑

l

a†l al(a
†
l al − 1) +

∑

l

εla
†
l al,

where as before 〈j, l〉 denotes a sum over all combinations of neighbouring sites, and εi is the local energy

offset of each site. In order to obtain the Bose-Hubbard model, we expand the field operator ψ̂(r) in terms
of Wannier function modes for the lowest Bloch Band centred at each site location rl, w0(r−rl) [210, 273] as

ψ̂(r) =
∑
l w0(r−rl)al. We then see that terms involving off-site interactions and tunnelling to more than

5 Although atoms consist of protons, neutrons, and electrons, a tightly bound atom at low energy can be assumed to maintain
bosonic or fermionic character provided short-distance physics can be eliminated, and the typical separation of atoms is
much larger than their size.
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the nearest neighbour site can be neglected in lattices deeper than about 5ER, where ER = ~2k2
L/(2m),

and kL is the wavenumber of the laser generating a cubic lattice through forming standing waves in three
dimensions [210, 211].

It is possible to realise a large array of lattice models in this way, and to obtain an array of spin models as
limiting cases [75]. Lattice geometries are specified by the optical trapping potentials, and it is also possible
to confine atoms to low-dimensional systems by making the lattice sufficiently deep along particular axis
directions that the atoms do not tunnel along those directions on typical experimental timescales [211].
Because J depends exponentially on the depth of the lattice, it is relatively straight-forward to make
tunnelling timescales very long indeed [211]. A particularly important model that can also be realised in
this way is the (fermionic) Hubbard model [77, 78],

HFH = −J
∑

〈l,j〉,σ
â†lσâjσ + U

∑

l

â†l↑âl↑â
†
l↓âl↓ +

∑

l,σ

εlâ
†
lσâlσ,

which is well known as a description for strongly interacting electrons in the solid state. Here, âlσ are
fermionic operators obeying standard anti-commutator relations, and σ ∈ {↑, ↓}. This is a simple example
of the many two-species models that can be engineered with atoms in optical lattices. It is similarly
possible to create mixtures of bosons and fermions in a lattice, as well as multi-band Hubbard models
[75, 81].

This level of control over ultracold atomic gases offers enormous new opportunities for the field of
analogue quantum simulation [70, 71]. In particular, by realising lattice models that are analytically and
computationally intractable, there is great potential to use these systems as a special-purpose analogue
quantum computer to determine the properties of these models. A simple but important example of this
is the simulation of the 2D Hubbard model, the ground state of which under certain conditions is still
debated. Moreover, the ability to construct an enormous range of models opens possibilities for realising
theoretical ideas that have been predicted, but never observed, in a real physical system. In each of
these ways, there are many possibilities for cold atoms in optical lattices to contribute strongly to our
understanding of many-body quantum physics in the next few decades.

At the same time, the use of these systems as quantum simulators also offers up key challenges. Firstly,
there are always imperfections in an experimental implementation that go beyond the Hamiltonian models
written down here. Technically, this can include things such as noise on lattice potentials [84, 85], and
also spontaneous emissions, or incoherent scattering of light from the lasers generating the optical lattice
potential [81, 274–277]. It is important to characterise and control the effects that these imperfections have
on the many-body states in the lattice, in order to restrict heating and ensure that the most interesting
many-body states can be reached [80]. Secondly, many of the most interesting many-body states specifically
require low temperatures for their realisation, especially those that arise in perturbation theory, e.g., as
spin superexchange terms ∝ J2/U in strongly interacting regimes where U � J [75]. While current
experimental temperatures have reached regimes of hundreds of picokelvin [80] – which is impressive on
an absolute scale – these temperatures are often higher than scales of the order of J2/U in optical lattices
[79, 278, 279].

However, the same understanding of the atomic physics that allows for design and engineering of lattice
and spin models in these systems also allows us to microscopically model dissipative processes, including
both the imperfections that can lead to heating, and also engineered dissipative processes that could provide
a new route to cooling and preparation of many-body states. Below we investigate several examples of
these processes, beginning with light scattering in an optical lattice and particle loss, and continuing on
to engineered dissipation, and state preparation in driven, dissipative systems.

B. Light scattering

Incoherent light scattering from trapped atoms has been studied in several different contexts over the past
few decades. This has included the study of heating of single particles in optical dipole traps [275, 276],
and more recently directly in the context of optical lattice potentials [81, 274]. Where early studies
with single atoms focussed on the rate of increase of energy, this is typically not sufficient to completely
characterise how the many-body state changes in an optical lattice. Instead, we have to look more closely
at the full out-of-equilibrium dynamics of the many-body system. This is more reminiscent of studies of
the measurement of Bose-Einstein condensates in the late 1990s, which sought to understand the origins
of interference patterns in experiments produced by multiple trapped condensates in a way that went
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beyond the assumption of each condensate having a fixed phase [280–288]. These studies included relative
phase measurement directly via light scattering [285, 289, 290], as well as decoherence of a Bose-Einstein
condensate due to such scattering processes [286].

For atoms in an optical lattice, it is possible to derive a many-body master equation to describe inco-
herent scattering of light in the system. This treatment involves the generalisation of the optical Bloch
equations from section III F 1 to many atoms, as was done by Lehmberg [213, 214], and the inclusion
of the atomic motion [277], in order to properly account for the mechanical effects of light on atoms
[198, 291, 292].

For a single particle, the resulting master equation for the system density operator ρ was derived in
several places [81, 274–276], and takes the form

d

dt
ρ = −i [Hatom, ρ]− Γ

2

∫
d2uN(u)

(
c†ucuρ+ ρ c†ucu − 2cuρ c

†
u

)
,

where the Hamiltonian for the single atom with ground state |g〉 and excited state |e〉, as depicted in
Fig. 2b, is given by

Hatom =
p̂ 2

2m
−∆|e〉〈e| −

(
Ω0(x̂)

2
|e〉〈g|+ H.c.

)
. (60)

The decay rate is given by Γ, and the jump operators in the master equation are cu = e−ikAu·x̂|g〉〈e|,
corresponding to a decay |e〉 → |g〉 and a momentum recoil. For the recoil, kA is the wavenumber of
a photon at the atomic transition frequency, and kA ≈ kL, where kL is the wavenumber of the laser
driving the classical transition at a spatially-dependent Rabi frequency Ω0(x̂) and with detuning ∆. The
distribution of scatted photons, N(u), is determined by the distribution of dipole radiation about the

dipole d̂ between the states |g〉 and |e〉 as

N(u) =
3

8π

[
1−

(
d̂ · u

)2
]
. (61)

Here, the equations of motion have been written in a frame rotating with the laser frequency, so that the
optical frequencies have been eliminated, and we have made the standard set of approximations outlined
in section II B. In the limit where ∆� Ω0, we can adiabatically eliminate the excited state [2], giving an
effective equation of motion for the system density operator for the ground state ρg,

d

dt
ρg = −i(Heffρg − ρgH†eff) + J ρg. (62)

Here,

Heff =
p̂ 2

2m
+
|Ω0(x̂)|2

4∆
− i

1

2

Γ|Ω0(x̂)|2
4∆2

≡ p̂ 2

2m
+ Vopt(x̂)− i

γeff(x̂)

2
, (63)

showing how the optical potential Vopt(x) arises from the AC-Stark shift in this two-level system, as well
as how the effective spontaneous emission rate γeff(x) appears. Note that we have also taken the limit
∆� Γ to simplify eq. (63). The recycling term in the master equation is given by

J ρg = Γ

∫
d2uN(u)

[
e−ikAu·x̂ Ω0(x̂)

2∆

]
ρg

[
eikAu·x̂ Ω∗0(x̂)

2∆

]
. (64)

From this, we clearly see the effect of the spontaneous emission on the motion of the atom in the ground
state, based on the effective jump operator c̃u(x̂) ≡ e−ikAu·x̂Ω0(x̂)/(2∆), which contains the momen-
tum recoils associated with the absorption of a laser photon from the classical field [Ω0(x)] followed by
spontaneous scattering of a photon in the direction u.

In Ref. [81], this derivation was generalised to N bosonic atoms in a laser field, where the dynamics of the
reduced density operator ρ, now for the many-body system, was derived. Because the dissipative dynamics
are again dominated by the large optical frequency, all of the usual quantum optics approximations from
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section II B can be made here. As in the single-particle case, the excited state is adiabatically eliminated,

making it possible to write a master equation in second quantisation using the field operators ψ̂(x),

ρ̇ = −i
(
Heffρ− ρH†eff

)
+ J ρ, (65)

with effective Hamiltonian

Heff = Hatoms +Heff,rad, (66)

where Hatoms was given in eq. (59) up to the additional note that the effective potential V0(r) = Vopt(r)
as given in eq. (63) above, and the effects of radiative coupling to the field are given by the effective
Hamiltonian term

Heff,rad =− i
1

2

∫
d3x

Γ|Ω0(x)|2
4∆2

ψ̂†(x)ψ̂(x)

− i
1

2

∫∫
d3xd3y

ΓΩ0(y)Ω∗0(x)

4∆2
F (kA(x− y))ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x)

+

∫∫
d3xd3y

ΓΩ0(y)Ω∗0(x)

4∆2
G(kA(x− y))ψ̂†(x)ψ̂†(y)ψ̂(y)ψ̂(x) (67)

and the recycling term [81]

J ρ =

∫∫
d3xd3y

ΓΩ0(x)Ω0(y)

4∆2
F (kA(x− y))ψ̂†(x)ψ̂(x)ρψ̂†(y)ψ̂(y), (68)

where the fuctions F and G are defined as

F (z) =

∫
d2uN(u)e−iu·z

=
3

2

{
sin z

z

(
1− (d̂ · ẑ)2

)
+
(

1− 3(d̂ · ẑ)2
)(cos z

z2
− sin z

z3

)}
, (69)

G(z) = − 1

z3
P
∫ ∞

−∞

dζ

2π

ζ3

ζ − zF (ζz/z)

=
3

4

{(
(d̂ · ẑ)2 − 1

) cos z

z
+
(

1− 3(d̂ · ẑ)2
)( sin z

z2
+

cos z

z3

)}
, (70)

and P is used to denote the Cauchy principal value integral. If the short-range collisional physics Hamil-
tonian accounting for short range collision physics in the presence of laser fields gives rise to additional
dissipative processes, than this can also be accounted for by an additional two-body loss term in the
effective Hamiltonian [81].

In eq. (68), the function F (kA(x − y)) is localised in (x − y) on a length scale given by 1/kA, i.e.,
λA/(2π). As a result, particles undergoing spontaneous emission can be reinterpreted as a continuous
measurement of the position of the atoms up to a position resolution of length scale λA/(2π). Phrased
another way, as the atoms scatter light incoherently in random directions, they provide their environment
with information about where they are. This scattering does two things then, as depicted in Fig. 12.
Firstly, with a probability given by η2, where η = 2πatrap/λ ∼ 0.3 for optical lattices with depth around
10ER, an atom beginning in the lowest band will be transferred to a higher band via the momentum recoil.
This depends on the size of the trap wavefunction atrap in each lattice site6. Then, whether or not the
atom is transferred to a higher band, a delocalised atom will be localised within the lattice, in the sense
that a coherent superposition of an atom delocalised over different lattice sites will be transferred to a
mixed state of the atom on different lattice sites. Note that this happens because the localisation scale
is λA/(2π), whereas the lattice spacing for a lattice formed by counter-propagating laser beams is λA/2.
This is the opposite limit to what might occur in solid state experiments, where the lattice spacing is often
much shorter than typical optical wavelengths.

6 Note that this transfer can also be interpreted as measurement of the position of the atom within the lattice site.
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FIG. 12: Schematic plot of the effects of spontaneous emissions in a deep optical lattice. For an atom beginning in
the lowest band of the lattice, a spontaneous emission (a) can transfer it to the first excited band with a probability
η2, were η is the Lamb-Dicke parameter (see the text for details), and (b) will always lead to localisation of the
atom, in the sense that the spontaneous emission provides information to the environment about the location of
the atom.
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FIG. 13: Comparison between the total process rate Γscatt/γ0 (solid lines) and the rate for processes back to
the lowest band (dashed lines) for ∆ < 0 (upper lines) and a ∆ > 0 (lower lines) in the ground state of a 1D
lattice (Using DMRG ground states for Bosons in a 1D lattice with lattice depth in the x, y and z directions
Vx = Vy = 30ER, Vz = 10ER). The rates include scattering from all three lattice generating beams. Reprinted
figure from H. Pichler, A. J. Daley, and P. Zoller, Phys. Rev. A 82, 063605 (2010) [81]. Copyright 2010 by the
American Physical Society.

The rate with which spontaneous emission events occur is then dependent on the sign of the detuning
for the atoms. For red detuning ∆ < 0, the AC-Stark shift potential derived in eq. (63) shows that atoms
are located where the light is brightest, whereas for ∆ > 0, the atoms are located where the light is
darkest. This results in a difference in scattering rates between blue and red light ∼ η2 [275, 276], with
the dominant process for blue-detuned fields being the transfer of atoms to the first excited band. This
can be seen in the results from Ref. [81] for scattering rates from many bosons in an optical lattice, which
are reproduced in Fig. 13. There the expected rate of scattering per particle Γscatt is plotted for atoms
in red and blue detuned optical lattices, normalised to γ0, which is the value of γeff (from eq. 63) at the
maximum depth of the lattice. The initial state involves bosons in a 1D optical lattice at unit filling, and
we see that in the red detuned case, for small interactions U/J , multiple occupancy of particles on lattice
sites gives rise to a super-radiant enhancement of the scattering rate.

Although the scattering rates are different by almost an order of magnitude between red and blue
detuning, the rate of energy increase is identical for the two cases, and also equal to N times the single
particle result [81, 274, 275]. This might seem to imply that red and blue detunings have the same effect
on a many body state, but this is not the case. The reason for this comes back to the question of whether
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FIG. 14: Schematic diagram indicating the energy scales involved in preventing thermalisation of the bandgap
energy after a spontaneous emission. Atoms transferred to a higher band cannot thermalise the energy ωgap on
typical experimental timescales, because this energy scale is much larger than the energy scales J associated with
tunnelling and U associated with interactions in the lowest band.
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FIG. 15: Relative rate of change of the (integrated) single particle density matrix S1D(z1, z2) =∫∫
dxdy〈ψ̂†(x, y, z1)ψ̂(x, y, z2)〉 in an effectively 1D lattice with depth in recoil energies given by (Vx = Vy = 30ER;

Vz = 10ER). In the tightly bound transversal directions the atoms are assumed to be in the lowest band. Scatter-
ing from all three lattice generating laser beams is taken into account (with weights corresponding to the lattice
depths). (The lattice constant is denoted by a.). Reprinted figure from H. Pichler, A. J. Daley, and P. Zoller, Phys.
Rev. A 82, 063605 (2010) [81]. Copyright 2010 by the American Physical Society.

energy added to the system is thermalised in an out of equilibrium many-particle system. Here, the largest
contribution towards the increase in energy in the system comes from transfer of particles to higher Bloch
bands. But, as depicted in Fig. 14, the bandgap energy ωgap � U, J , so that the energy scales of dynamics
in the lowest band are much smaller than the bandgap energy. This means that only a very high-order
process in J/ωgap and U/ωgap will allow the sharing of the bandgap energy amongst atoms in the lowest
band. These processes will not take place on typical experimental timescales, and so the system will not
thermalise the energy input from the scattering on the relevant timescales.

For this reason, it is important to study the complete out-of-equilibrium many-body physics of many
atoms as described by the master equation. As a first step in this direction, it is possible to calculate

the rate of change of the single-particle density matrix 〈ψ̂†(x)ψ(y)〉 at short times using perturbation
theory. This correlation function is important, because it characterises the off-diagonal long-range order
in a superfluid phase, as well as the expontential localisation of particles in a Mott Insulator. This
calculation was performed in Ref. [81], and the results are shown in Fig. 15. This shows that the key effect
of spontaneous emissions is to lead to localisation of the atoms, and therefore a direct decrease in the
off-diagonal elements. This rate of decrease is proportional to the scattering rate, and therefore is much
larger for red-detuned lattices than for blue-detuned lattices. It is also more important in the superfluid
state, where the off-diagonal correlations are initial strong, as opposed to the Mott Insulator state, where
the atoms are anyway initially exponentially localised.

To go beyond this perturbation theory result, in Ref. [81], a combination of t-DMRG with quantum
trajectories is used to solve the master equation for atoms in the lowest band. Under the approximation
that atoms do not get transferred to higher bands, and making the approximation that atoms are localised
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FIG. 16: Comparison of the decay of off-diagonal correlations in the single particle density matrix S(i, j) = 〈a†iaj〉
as a function of time. These are computed from the master equation for the lowest band Eq. (71) with γ/J = 0.01
for 24 particles on a 24 site lattice by combining quantum trajectories methods with t-DMRG. (a) Comparison
of the decay of off-diagonal elements

∑
i S(i, i+ x) when U/J = 2 (superfluid regime, upper lines) and U/J = 10

(Mott Insulator regime, lower lines). In each case we show correlations at separation distances x = 1 (solid lines)
and x = 2 (dashed lines), each of which are averaged over i. We see that the correlations for the Mott Insulator
state at U/J = 10 are almost constant, whereas for U/J = 2, the decay becomes more rapid than at initial
times. (b) Comparison of S(i, i+ 2) averaged over i and normalized to the value at time t = 0, |S(i, i+ 2)|[t = 0]
for U/J = 2, 4, 6, 8, 10 (seen here from bottom to top). The dashed line shows the corresponding result from
perturbation theory. Each computation was averaged over 1000 trajectories, and error bars are shown in (b). For
(a), the statistical errors fit inside the line thickness. Adapted from H. Pichler et al., Phys. Rev. A 82, 063605
(2010) [81]. Copyright 2010 by the American Physical Society.

exactly on a single site, eq. (65) reduces to

ρ̇ = −i[HBH , ρ]−
∑

i

γ

2
(niniρ+ ρnini − 2niρni) , (71)

where ni = a†iai, γ is the effective scattering rate on a single site, and HBH is the Bose-Hubbard Hamilto-
nian for the lowest band from eq. (48). In Fig. 16 we reproduce the results for the time dependence of the

single-particle density matrix in the lowest band, 〈a†iaj〉. It can be seen that in the Mott Insulator limit,
studying the proper interplay between coherent and dissipative dynamics in this system shows that the
system is even more robust towards spontaneous emissions than might have been expected from pertur-
bation theory, as local correlations are reestablished by coherent dynamics. The superfluid state, on the
other hand, exhibits a faster rate of decay for off-diagonal elements of the single-particle density matrix
at medium times than had been predicted using perturbation theory. This appears to result from better
thermalisation of the energy being added to the system from spontaneous emission events.

The interplay between interactions and dissipation also leads to interesting dynamics in on-site particle
occupation numbers for bosons. In particular, dynamics resulting from spontaneous emissions generate
significant probability that states with multiple occupancies on lattice sites – which are disfavoured due
to interaction energies – will appear, and these probabilities continue to grow over time. In Refs. [82, 83],
Poletti et al. investigate these dynamics beginning from eq. (71). They observe a number of striking effects,
including the tendency of interactions to slow down decoherence, because spontaneous emissions distin-
guish only between states with different on-site particle numbers. Strong interactions lead to exponential
localisation of particles at given lattice sites, with small amplitudes in perturbation theory for particles to
be found at neighbouring sites. This results in anomalous diffusion in a particle number basis, even for a
two-site model with large occupation [82]. For a lattice with many sites, it further gives rise to glass-like
behaviour, exhibiting an anomalous diffusive evolution in configuration space at short times and dynamics
dominated by rare events at long times [83].

An example of these dynamics for a two-site system is reprinted from Ref. [82] in Fig. 17, and shows
how the probability distribution for different occupation numbers on two sites diffuses as a function of
time. Specifically, the plot shows diagonal terms of the density matrix ρn,n, with ρ =

∑
ρn,m|n〉〈m| versus

rescaled time τ on a log-log scale, beginning with equal number of particles on each site. Computing the
dynamics described by Eq. (71), the initial behaviour is an exponential change away from this configuration,
which is replaced by power-law decay with an exponent of 1/4, as the dynamics become dominated
by processes populating states with high local occupancy. Related behaviour can be seen for a lattice
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FIG. 17: Diagonal terms of the density matrix ρn,n, with ρ =
∑
ρn,m|n〉〈m| versus rescaled time τ in log-log form:

the exact solutions of Eq. (71) for n = 41(top)...80(bottom) are represented by blue continuous lines; the element
n = 40 (thick red line) is proportional to the probability of finding a balanced configuration Pb; the corresponding
diffusion density p(x = n/N, τ) Eq. (5) of Ref. [82] up to n/N = 60 are shown in dashed green lines. Inset: 3D
plot of the evolution. Parameters: U/J = 20, ~γ/J = 1, N = 80 and L = 2. Reprinted figure with permission
from D. Poletti, J.-S. Bernier, A. Georges, and C. Kollath, Phys. Rev. Lett 109, 045302 (2012). Copyright 2012
by the American Physical Society.
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FIG. 18: Numerical evolution of the density matrix elements ρ(n, τ) (solid lines), where the density operator is
given by the ansatz

⊗
j

[∑
n ρ(n, t)|n〉〈n|

]
, in a semi-logarithmic plot, versus n for large rescaled times τ between

0.1 and 50 (not equidistant) in the direction of the (red) arrow. The inset shows the same evolution at shorter
times τ between 0.0002 and 0.1 (not equidistant) in the direction of the (red) arrow in a linear plot. Parameters:
N/L = 3, U/~γ = 10. The (red) dashed lines show the (analytical) asymptotic limit. Reprinted figure with
permission from D. Poletti, P. Barmettler, A. Georges, and C. Kollath, Phys. Rev. Lett 111, 195301 (2013) [83].
Copyright 2013 by the American Physical Society.

with many sites, as demonstrated by a figure reprinted here from Ref. [83] in Fig. 18. The calculation
shown involves an approximate solution to the master equation eq. (71), obtained using a separable and
translationally invariant ansatz for the density operator as ρ =

⊗
j [
∑
n ρ(n, τ)|n〉〈n|]. Here the sum over j

includes all of the lattice sites and that over n includes all of the possible occupations of each site. Again, it
is clear that the long-time behaviour is dominated by anomalous diffusion that populates states with high
onsite occupation numbers. Such dynamics should be directly observable in current experiments, especially
in setups with local site addressing in a quantum gas microscope and control over light scattering rates.
Initial experimental studies of dynamics in the presence of light scattering and density measurements were
recently performed by Patil et al. [293].

For fermionic species this interplay between interactions and dissipation can similarly lead to important
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in solid state physics, where λ is much larger than the lattice
spacing. These processes increase the energy on scales of the
width of the lowest band, as atoms are transferred to higher
quasimomentum states.

Thermalization properties then depend on dynamics de-
scribed by the Bose-Hubbard model,

H = −J
∑

⟨i,j⟩
b

†
i b j + U

2

∑

i

b
†
i b

†
i bibi +

∑

i

εib
†
i bi . (1)

Here, b
†
i is a bosonic creation operator for an atom on site

i , J denotes the tunneling rate between neighboring sites,
U is the on-site interaction, and εi is the on-site potential.
This model is nonintegrable outside the limiting cases of
U → 0 and U/J → ∞, and has been shown to exhibit chaotic
spectral properties when U ∼ J [29,30]. As a result, it might
be expected that the system will thermalize for most values
of U/J , with the most rapid thermalization around U ∼ J .
For high values of U/J , the system behaves as hard-core
bosons, relaxing to a generalized Gibbs ensemble [10,31].
This is what is typically expected for a global quench of the
value of U/J [32]. However, it is not clear that this analysis
applies to our situation because a spontaneous emission event
leads to localization of atoms in a local quantum quench with
excitations that are very low in energy. Because the lowest part
of the energy spectrum can exhibit spectral statistics closer to
an integrable model [29], this may even result in a lack of
thermalization for all values of U/J . Below we find that the
relaxation time scales and equilibrium values strongly depend
on the interactions in the lower band (as it is also observed for
local quenches in 2D [33–35]).

In the lowest band, the heating and thermalization together
can be effectively described by a master equation [4] (see
Supplemental Material [36]),

ρ̇ = −i [H,ρ] − γ

2

∑

i

[n̂i ,[n̂i ,ρ]], (2)

where H is the Bose-Hubbard Hamiltonian (1). The dissipative
dynamics involve localization of particles on a single site via
scattering of photons at a rate γ , which depends on the intensity
of the lattice lasers and the detuning from resonance.

Thermalization after a single intraband spontaneous emis-
sion event. In order to characterize the thermalization process,
we first consider the situation where the system is in the
ground state of model (1) |ψg⟩ at time t = 0, and undergoes
a spontaneous emission (on site i). In the sense of continuous
measurement theory [19] applied to (2), the resulting state
prepared is

|ψi(t = 0+)⟩ = n̂i|ψg⟩
||n̂i|ψg⟩||

. (3)

We consider a weighted ensemble average over the sites i
with probabilities of spontaneous emission pi ∝ ⟨ψg|n2

i |ψg⟩,
and treat a 1D system, where we can use t-DMRG methods
to propagate the state exactly in time. Note that all t-
DMRG results are converged in the matrix product state bond
dimension D and the truncation of the local dimension dl .

Figure 1(b) shows the typical dynamics after a spontaneous
emission spreads a particle over the whole Brillouin zone and
increases the kinetic energy Ekin. The interactions between
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FIG. 1. (Color online) (a) Absorption and spontaneous emission
of a lattice photon leads effectively to localization of single atoms.
Tunneling and interactions between atoms then redistribute the
energy added to the system. (b) Localization of an atom in space
corresponds initially to a distribution of the atom over the whole
Brillouin zone (the tails of the quasimomentum distribution are lifted).
Subsequent unitary evolution leads to a broadened quasimomentum
distribution, i.e., the nq=0 peak and the tails decrease, while the small
quasimomentum components increase (t-DMRG, U = 2J , N = 48
particles on M = 48 sites, dl = 6, D = 512).

particles transfer some of this increased kinetic energy to
interaction energy, as shown explicitly in Fig. 2(a) for an
initial superfluid (SF) state with U = 2J . At t = 0+, Ekin is
increased by an amount of the order of J over the ground-state
value, and it then relaxes to a lower value over a time scale
∼5/J in unitary time evolution. We obtain an equilibrium
value Ekin

eq from path integral Monte Carlo (QMC) calculations
with worm-type updates [37] (here in the implementation of
Ref. [38]—see Ref. [39] for a recent review of the method with
applications to cold gases) at finite temperature T , fitting T
to match the value of energy ⟨E⟩ for t ! 0+. It is remarkable
that this value corresponds to the equilibrium value reached
dynamically within statistical errors, indicating thermalization
of this quantity. In contrast, for an initial Mott insulator (MI,
U = 4J ) state, Ekin relaxes on a slightly longer time scale
to an equilibrium value that clearly does not correspond to a
thermal distribution at the appropriate value of ⟨E⟩. In fact,
in this parameter regime, thermally induced coherence in the
MI leads to a Ekin

eq being close or even below the value of the
ground-state kinetic energy [40].

In Fig. 2(c) we compare the extrapolated equilibrium kinetic
energy Ekin

∞ (obtained from an exponential fit) to Ekin
eq for

various system sizes and interaction strengths. The lack of
thermalization for values of U/J immediately above the
SF-MI transition point (when the gap is about & = J/8) is
striking. Although from our calculations we cannot rule out a
second relaxation process to a thermal distribution for much
larger systems or on much longer time scales, it is clear that
a qualitative change in behavior occurs here, leading to a
lack of thermalization on typical experimental time scales.
Before performing these calculations, we might have expected
a crossover behavior, similar to that seen in the relaxation
rates, as shown in Fig. 2(d) from exponential fits to the
long-time behavior of Ekin, where the fastest relaxation occurs
for U/J ∼ 1.

Note that as with thermalization in any closed quantum
system, the behavior depends on the observable considered,
and sufficiently complicated or nonlocal observables will
never thermalize [5]. In Figs. 2(e) and 2(f), we show the
quasimomentum distribution nq in our system with open

011601-2

FIG. 19: (a) Absorption and spontaneous emission of a lattice photon leads effectively to localization of single
atoms. Tunnelling and interactions between atoms then redistribute the energy added to the system. (b) Local-
ization of an atom in space corresponds initially to a distribution of the atom over the whole Brillouin zone (the
tails of the quasi-momentum distribution are lifted). Subsequent unitary evolution leads to a broadened quasi-
momentum distribution, i.e., the nq=0 peak and the tails decrease, while the small quasi-momentum components
increase (t-DMRG results, U = 2J , N = 48 particles on L = 48 sites, dl = 6, D = 512. Reprinted figure from
J. Schachenmayer, L. Pollet, M. Troyer, and A. J. Daley, Phys. Rev. A 89, 011601(R) (2014) [86]. Copyright 2014
by the American Physical Society.

many-body effects. In the case of multiple fermionic species, where the dissipation distinguishes between
the two species, this can lead to a build-up of long-range correlations beginning from a fermionic Mott
Insulator [294]. The same types of effects can also protect states of spin-ordered fermions, especially where
spontaneous emission does not distinguish between different spin-species [295].

Another important question related to the interplay between dissipative and coherent dynamics is that
of whether spontaneous emission events that leave atoms in the lowest band of an optical lattice lead to
energy increases that can be thermalised on typical experimental timescales. Though atoms being placed
in higher bands cannot thermalise the bandgap energy, as we have already discussed, there is experimental
evidence that suggests as a system heats due to spontaneous emissions that the momentum distributions
can be quantitatively compared with thermal momentum distributions calculated via Quantum Monte
Carlo methods [296].

In Ref. [86], this is studied using quantum trajectory methods combined with t-DMRG, initially con-
sidering the thermalisation after a single spontaneous emission event (averaged over the different lattice
sites on which the event can occur), and then generalising this to continuous light scattering. As shown in
Fig. 19, after a spontaneous emission occurs, initially the momentum distribution develops strong tails as
a result of a single atom being localised spatially on a lattice site, and therefore completely delocalised over
the Brillouin zone in quasimomentum. As a result of interactions with other particles, the quasimomentum
distribution then gradually relaxes towards a steady-state value. As a particular way of determining to
what extent simple single-particle quantities have thermalised after a particular length of time, the time
dependence of the kinetic energy and the quasimomentum distribution is then calculated, and compared
with the thermal values from a canonical ensemble in which the temperature is chosen to match the total
energy in the system.

It is found that both in the Mott Insulator and the superfluid regime, the system relaxes to a steady
state value on a short timescale. As can be seen in Fig. 20a, in the superfluid regime the value to which
the kinetic energy relaxes is equal to the expected thermal value Ekin

eq in a canonical ensemble with the
same total energy. Such a relaxation has also been recently explored for Luttinger liquids heated in a
related manner [297]. However, in the Mott Insulator regime (Fig. 20b), while the system relaxes rapidly
to a steady-state value, this is not the same value as expected from a canonical ensemble with the same
total energy. As shown in Fig. 20c, such discrepancies begin at the phase transition point, and become
larger for larger U/J . This sudden transition is in contrast to the variation of the relaxation rate as a
function of U/J , which is smoothly and slowly varying (Fig. 20d). Similar results and timescales are seen
for the high-quasimomentum components of the quasimomentum distribution, as shown in Figs. 20e,f.
For low-quasimomentum values also on the superfluid side the relaxation time is much longer, because
these momentum values depend heavily on correlation functions over long distances. In Ref. [86], it is
shown that this behaviour, as a local quench, is strongly dependent on the low-energy spectrum of the
Hamiltonian, which leads to the strong changes from the superfluid regime to the Mott Insulator regime.

Microscopic understanding and control over spontaneous emissions in many-body systems also has other
applications, including the potential to observe Pauli-blocking of spontaneous emissions [97, 298] for Fermi
gases. This can be used as an ingredient in state preparation schemes that produce pairing of fermions
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FIG. 2. (Color online) Time evolution after a single spontaneous
emission. (a), (b) For a superfluid initial state (U = 2J ), the kinetic
energy relaxes to the equilibrium value obtained from a Monte Carlo
calculation Ekin

eq . For MI states (U = 4J ), the energy relaxes, but not to
Ekin

eq . The zero value of kinetic energy for this plot is the ground-state
kinetic energy Ekin

gs . (c) The difference in the infinite time value of the
kinetic energy (obtained from an extrapolation of an exponential fit) to
the equilibrium energy. For MI states with U/J ! 3.37, the difference
increases rapidly for M = 24,48,96 sites. (d) The decay rate extracted
from the exponential fit as a function of U . (e) Comparison of the
time-evolved quasimomentum distribution at t = 10/J (dots) to the
equilibrium distribution from a QMC calculation. (f), (g) Differences
between the two distributions as a function of time for the qa = 0 peak
and for a large quasimomentum of qa = (40/48)π . In the superfluid
[U = 2J in (f)], the components for large momenta relax rapidly to
thermal values, for qa ∼ 0, the relaxation time scale is much longer. In
the MI [U = 5J in (g)], the same is true, but for large momenta there is
a discrepancy to the thermal value. (t-DMRG, dl = 6, D = 256,512;
error bars represent fitting errors and statistical errors from QMC.)

boundary conditions for different points in time. For all q
except very near q = 0, nq relaxes to a thermal distribution
on time scales tJ ∼ 5 in the SF for U ! 1. However, long-
wavelength modes around nq=0 require much longer relaxation
time scales, and are still far from their steady-state values on the
time scales computed here (though they are evolving towards
the expected thermal value). In the MI, the distribution behaves
qualitatively differently, in that all values of q show small
discrepancies from the equivalent thermal values, consistent
with what we observed for the kinetic energy. While these
discrepancies are small for a single spontaneous emission
event, they can be much larger when multiple photons are
scattered in the experimental protocol discussed below.

Explanation based on the low-energy spectrum. The key
to understanding the qualitative change in behavior at the
transition point lies in the fact that the spontaneous emissions
give rise to a local quantum quench, which only significantly
populates low-energy eigenstates. Most of the amplitude of the
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FIG. 3. (Color online) Expectation values of the kinetic energy
of the lowest 1000 eigenstates as a function of the energy in a system
with M = 10 and N = 10 (exact diagonalization). The gray line in the
upper plot shows the equilibrium kinetic energy Ekin

eq for increasing
temperatures as a function of the mean energy of the underlying
Boltzmann distributions. In the SF, the eigenvalue expectations are
distributed around Ekin

eq , but are far from these values in the MI. The
lower parts show the occupation probabilities for eigenstates after a
single spontaneous emission.

resulting wave function is in the ground state (Fig. 3), where
we plot occupation probabilities |cα|2 and expectation values
of the kinetic energy ⟨Eα|Êkin|Eα⟩ in the lowest 1000 energy
eigenstates |Eα⟩. We find that Ekin grows essentially linearly as
a function of Eα , even for U/J ∼ 3 near the phase transition,
and that these values coincide with Ekin

eq from Boltzmann
distributions with corresponding mean energies Eα . Therefore,
a state with |cα|2 leading to an energy expectation ⟨E⟩
will approximately have the same kinetic energy as Ekin

eq
with mean energy ⟨E⟩. Thus, also the long time average
⟨Ekin⟩ →

∑
α |cα|2⟨Eα|Êkin|Eα⟩ [5] will correspond to Ekin

eq
for the corresponding ⟨E⟩. As soon as we enter the MI phase,
between U/J ≈ 3 and 3.8, there is a qualitative change in the
distribution of ⟨Eα|Êkin|Eα⟩, as depicted in Fig. 3, after which
we cannot expect to obtain thermal values. In the deep MI,
⟨Eα|Êkin|Eα⟩ are far from Ekin

eq , and correspond to excitations
of doublon-holon pairs. In this limit, the system will relax over
time to a generalized Gibbs ensemble.

Proposed experimental measurement. We now consider a
specific experimental setup in which these effects could be
observed. It is important to consider multiple spontaneous
emission events, both because of the difficulty of restricting
to a single event, and in order to make the change in
the momentum distribution sufficiently large to measure.
As depicted in Fig. 4(a), we consider a situation in which
the background scattering rate is low, and then a moderate
scattering rate is induced for a short time t = 1/J (e.g., via
a weak beam with near-resonant light). We then switch this
off, and observe how the system thermalizes over a time
scale of t ∼ 5/J . We compute the dynamics of this process
by combining t-DMRG methods with quantum trajectory
techniques [41], which after a stochastic average allow us to
determine the many-body dynamics from the master equation
(see Supplemental Material [36]).

In Fig. 4(a), we plot Ekin and Ekin
eq as a function of

time. As expected from our single-event calculations, the
Ekin increases much faster than would be expected from a
thermal distribution with the same increase in total energy

011601-3

FIG. 20: Time evolution after a single spontaneous emission (averaged over jumps on all possible sites). (a - b) For
a superfluid initial state (U = 2J), the kinetic energy relaxes to the equilibrium value obtained from a Quantum
Monte Carlo (QMC) calculation Ekin

eq . For MI states (U = 4J), the energy relaxes, but not to Ekin
eq . The zero value

of kinetic energy for this plot is the ground state kinetic energy Ekin
gs . (c) The difference of the infinite time value

of the kinetic energy (obtained from an extrapolation of an exponential fit) to the Monte Carlo equilibrium energy.
For MI states with U/J & 3.37, the difference increases rapidly for system sizes M = 24, 48, 96 sites (d) The decay
rate extracted from the exponential fit as a function of U . (e) Comparison of the time-evolved quasi-momentum
distribution at t = 10/J (dots) to the equilibrium distribution from a QMC calculation. (f) Differences between
the two distributions as a function of time for the qa = 0 peak and for a large quasi-momentum of qa = (40/48)π.
In the superfluid (U = 2J), the components for large momenta relax rapidly to thermal values, for qa ∼ 0, the
relaxation timescale is much longer. In the MI with U = 5J , the same is true, but for large momenta there is a
discrepancy to the thermal value. (t-DMRG results, dl = 6, D = 256, 512; error bars represent fitting errors and
statistical errors from QMC. Reprinted figure from J. Schachenmayer, L. Pollet, M. Troyer, and A. J. Daley, Phys.
Rev. A 89, 011601(R) (2014) [86]. Copyright 2014 by the American Physical Society.

dissipatively [94, 95]
With this recent progress, it has been possible to understand various basic features of heating and

decoherence of many-particle states with cold atoms in optical lattices. In the near future it should
be possible to investigate such effects for a much broader range of many-body states and Hamiltonians.
This will provide both a better fundamental understanding of decoherence in many-body states, as well
as important practical information for controlling heating in experiments. In the near future it will be
important to understand better how the dynamical processes that atoms undergo as they are loaded into
a lattice or many-body states are prepared interacts with the dissipation to produce heating during this
phase of the experiment. It will also be important to go further into other dissipative mechanisms and
their effects, including classical noise [84, 85] and particle loss (see the next section).

C. Particle loss

Another dissipative process with strongly interacting cold quantum gases that can be treated in ex-
perimentally relevant regimes using open systems techniques from quantum optics is particle loss. In
collisional loss events, the binding energy released in the collision is typically much larger than the depth
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of the corresponding trap. In this regime, this energy acts as a large scale, exactly in the sense of section
II B. In particular in the case that atoms lost in such events will leave the lattice without additional
collisions, this allows Born and Markov approximations to be made, and the derivation of a corresponding
master equation. This has been investigated theoretically for two-body [101, 102], three-body [104], and
single-body [124] loss processes for cold atoms in optical lattices.

One particularly useful and counter-intuitive result that emerges is that these systems are often found
in a regime where losses can be suppressed by a continuous quantum Zeno effect [182, 299]. This has been
observed in experiments for two-body losses of molecules [23, 101], and initial indications have also been
seen for three-body loss in caesium atoms [105]. In this section we introduce the continuous quantum Zeno
effect, before reviewing these observations and the consequences for many-body physics in these systems.

1. Continuous quantum Zeno effect

The quantum Zeno effect was first discussed by Misra and Sudarshan in Ref. [299], and involves the
tendency of repeated measurements on a quantum system to inhibit coherent processes. In an idealised
scenario, this can be formulated with projective measurements as follows: if we consider, e.g., a two level
system that begins in the state |g〉 and is coupled resonantly to state |e〉 with effective Rabi frequency
Ω, then after a short time ∆τ , the probability a measurement finding the system to be in state |e〉,
Pe ≈ Ω2∆τ2/4. Because this result ∝ ∆τ2, if measurements are repeated in equally spaced intervals up
to a time T , then as we increase the number of measurements T/∆τ by taking ∆τ → 0, we see that the
probability of finding the system in the excited state at time T also goes monotonically to zero. This effect
was first observed in trapped ions by Itano et al. [182], and an anti-Zeno effect that arises under more
general conditions has also been measured [300].

The continuous quantum Zeno effect is a generalization of these ideas to continuous measurements
[182, 301], in the sense that when a system is coupled to its environment, then the environment can be
seen to be continuously performing measurements on the system. In essence it amounts to the fact that a
strong dissipative process in a quantum system can suppress a related coherent process. Let us consider
the specific case of a two-level atom described by the optical Bloch equations from section III F 1. In the
presence of spontaneous decay of the excited state, we can write the quantum trajectories formulation of
the evolution with an effective Hamiltonian given by

Heff = −Ω

2
σx −∆σ+σ− − i

Γ

2
σ+σ−. (72)

If the system begins in the ground state |g〉, then for small Γ it will undergo damped Rabi oscillations
as computed in section III F 1. Let us now consider the overdamped regime Γ � ∆,Ω. For the general
case where Ω� ∆ and/or Ω� Γ, we can apply perturbation theory to the effective Hamiltonian, taking
H0 = −(∆ + iΓ/2)σ+σ− and H1 = −Ω

2 σx, and we see that we can write the effective energy shift for the
ground state, Eg as:

Eg =
〈g|H1|e〉〈e|H1|g〉

∆ + iΓ/2
=

Ω2

4∆2 + Γ2
(∆− iΓ/2) (73)

Based on the physical interpretation of quantum trajectory methods, we know that the probability of
spontaneous emission occurring after time t, Ps(t) is given by 1 − ‖|Ψ〉‖, where Ψ is the corresponding
wavefunction evolving under the effective Hamiltonian. In the perturbation theory limit, we therefore have

Ps(t) =

∥∥∥∥exp

[
−i

Ω2

4∆2 + Γ2
(∆− iΓ/2)t

]
|g〉
∥∥∥∥

2

= exp

[
− Ω2

4∆2 + Γ2
Γt

]
, (74)

so that the effective photon scattering rate is given by Γscatt ≈ Ω2Γ/(4∆2 +Γ2). In the limit where Γ� ∆,
we see that this reduces to Γscatt ≈ Ω2/Γ, i.e., as we continue to increase Γ, the scattering rate decreases.

This is the essence of the continuous quantum Zeno effect - for sufficiently strong dissipative processes,
the dissipation will suppress coherent processes (in this case the classical drive with Rabi frequency Ω) that
occupy the states coupled to that dissipation. This leads to the counterintuitive situation that increasing
the rate of dissipation for specific states actually leads to less actual dissipation in total (at least for a
system beginning in a state that doesn’t directly undergo dissipative processes – if we begin in the state |e〉,
it always decays at a rate Γ). This can also be rephrased in two other ways - one is that the linewidth of
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the excited state is so broad that coupling into it is suppressed. The other is that increasing Γ increases the
effective coupling to the environment, and therefore the rate at which the environment obtains information
– or measures the system, analogously to the quantum Zeno effect with projective measurements.

2. Two-body loss

Evidence for the quantum Zeno effect resulting from two-body loss in a many-particle system was first
obtained by Syassen et al. [101]. Their setup involved weakly bound Feshbach molecules of Rb2 [272] held
either in 3D optical lattice potentials, or confined to move in 1D tubes, in a regime where collisions between
molecules resulted in the transfer of one molecule to a much more deeply bound state, and the separation
of the atoms forming the second molecule. The binding energy released in this collision is typically much
larger than the depth of the optical trap confining the molecules to begin with, resulting in loss of the
particles involved in the collision. Because of the large energy scale involved in the inelastic collision, and
because the particles are ejected immediately from the trap, the approximations made in section II B are
justified, and a master equation can be derived to describe this process. Detailed analysis of these master
equations are presented in Ref. [102] for the 3D lattice case, and in [302] for the case of particles in 1D
tubes, based on a Lieb-Liniger model. In each case, a master equation can be derived for the density
operator ρ of the system, tracing over the states associated with the products of the collision. Assuming
an effective zero-range potential to describe two-body loss in an equivalent form to the description of
elastic interactions between particles, this can be written in terms of a field operator for bosonic Feshbach

molecules in the initial state, ψ̂m(r) as [102]

dρ

dt
= −i[Hmol, ρ]

−L2

2

∫
d3r

{
2[ψ̂m(r)]2ρ[ψ̂†m(r)]2 − [ψ̂†m(r)]2[ψ̂m(r)]2ρ− ρ[ψ̂†m(r)]2[ψ̂m(r)]2

}
,

(75)

where L2 is the two-particle loss coefficient, and the coherent hamiltonian Hmol takes the same form as
the atomic hamiltonian eq. (59) in section V A,

Hmol ≈
∫
d3r ψ̂†m(r)

[
− ~2

2m
∇2 + V0(r)

]
ψ̂m(r) +

g

2

∫
d3r [ψ̂†m(r)]2 [ψ̂m(r)]2. (76)

Here, m is again the particle mass (now the mass of a Feshbach molecule), and g = 4π~2ascatt/m, where
ascatt is the real part of the scattering length for two Feshbach molecules (L2 may be interpreted as the
imaginary part of an effective two-particle scattering length including inelastic processes [102]).

In the case of a 3D optical lattice, this can be rewritten as an equation of motion for molecules in the
lowest band of the lattice, analogously to the derivation of the Bose-Hubbard model that was discussed in
section V A. The resulting master equation is given by [102]

dρ

dt
= −i

(
Heff,mρ− ρH†eff,m

)
+ Γ0

∑

l

m̂2
l ρ(m̂†l )

2, (77)

with bosonic annihilation operators for Feshbach molecules in Wannier function modes denoted ml, and
the effective Hamiltonian

Heff,m = HBH,m − i
Γ0

2

∑

l

(m̂†l )
2m̂2

l . (78)

Here, HBH,m is the Bose-Hubbard Hamiltonian for molecules on the lattice, taking an identical form to
HBH from eq. (48), but with bosonic molecule operators ml, and Γ0 denotes the effective on-site loss
rate when two molecules occupy the same site of the lattice. As for the previous discussion of the Bose-
Hubbard model in section V A, we require all parameters to be small compared with the band gap energy,
and assume that terms involving off-site processes other than nearest neighbour tunnelling are negligibly
small (see below for further comments on this).
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ŷ

x̂

ẑ
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FIG. 21: Quantum Zeno effect for polar molecules in a 3D lattice. a, The lattice depths along x and z are
kept at 40 ER, while the lattice depth along y is reduced to allow tunneling along the y direction at a rate Jt/~.
Once two molecules in different spin states tunnel to the same site, they are lost due to chemical reactions at
a rate Γ0. b, Number loss of | ↓〉 state molecules versus time is shown for lattice depths along y of 8.1 ER and
15.1 ER. c, The number loss rate κ versus Γ0 fits to a 1/Γ0 dependence, which is consistent with the quantum Zeno
effect. d, The number loss rate κ versus Jt fits to a (Jt)

2 dependence, as predicted from the quantum Zeno effect.
Reprinted by permission from Macmillan Publishers Ltd: Nature, B. Yan, S. A. Moses, B. Gadway, J. P. Covey,
K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Nature 501, 521 (2013), copyright 2013.

In order to interpret more directly the dynamics described by this master equation, we can expand
the density operator in terms of the contributions with fixed particle number N , ρN . Beginning with N0

particles in the system, ρ =
∑
N=N0,N0−2,N0−4,... ρN , and

ρ̇N = −i
(
HeffρN − ρNH†eff

)
+ Γ0

∑

i

m̂2
i ρN+2(m̂†i )

2. (79)

We can then consider the loss as having two effects: it produces states with two less particles, with the
corresponding coupling between density matrices given by the recycling term, and for a fixed particle
number, it provides an effective two-body on-site interaction term with an imaginary coefficient. This
term generates the quantum Zeno effect analogously to the case of a two-level system discussed in section
V C 1.

An identical treatment can also be performed to describe two-particle losses in ground-state molecules
due to chemical reactions, as was recently done by Yan et al. [23] for the case of KRb molecules on a lattice,
which can reach to form Rb2 and K2 molecules, again with a release of binding energy that is much larger
than the lattice depth [23, 103]. In Fig. 21, we reprint their results demonstrating the suppression of loss
due to the quantum Zeno effect. In particular, by allowing tunnelling only along one direction in a 3D
optical lattice, they make it possible to independently control the tunnelling J and the on-site loss rate
Γ0 by controlling the lattice depth along the 1D axis and transverse to it [23, 103]. The setup, initially
involving KRb molecules in separate lattice sites, is depicted in Fig. 21a, and as a function of time leads to
losses of molecules as depicted in Fig. 21b. By fitting a loss rate coefficient κ based on the time-dependence
of the molecule number N↓(t),

dN↓
dt

= −κ N↓(0)

[N↓(t)]2
, (80)

they can investigate the change in the effective loss rate as J and Γ0 are varied. The results shown in
Figs. 21c,d demonstrate very clearly the suppression of loss as Γ0 is increased, by showing that κ ∝ J2/Γ0.
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FIG. 22: (a) Measured number loss of | ↓〉 molecules for an axial (transverse) lattice depth of Vy = 5ER (V⊥ =
25ER) (circles) and best fit using a rate equation, dN↓/dt = −κN↓(0)/[N↓(t)]

2 (black dashed line). (b) Number
loss rate, κ, as a function of Γ0 (fixing J ≈ 570 Hz and varying the bare on-site rate via V⊥). (c) Number loss
rate, κ, versus J for fixed Γ0 ≈ 87 kHz (varying Vy and adjusting V⊥ accordingly). Vy (V⊥) was varied from 5
to 16ER (20 to 40ER). Black circles are experimental measurements (error bars represent one standard error).
Green short-dashed lines show solutions of the rate equation using an effective loss rate Γeff ∝ J2/Γ0 (single-band

approximation). The blue long-dashed line shows the multiband rate equation using Γ̃eff ∝ J̃2/Γ̃0, in which J̃

and Γ̃0 are renormalized coefficents based on the effective multi-band theory. The multiband and single-band rate
equation results were obtained by fixing the filling fraction to be 6%, and 25% respectively. Panels (b) and (c)
directly manifest the continuous quantum Zeno effect: in (b) the measured loss rate κ decreases with increasing
on-site Γ0; in (c) a fit to the experimental data supports κ ∝ J2, with a χ2 (sum of the squared fitting errors)
several times smaller than for a linear fit. Reprinted figure with permission from B. Zhu et al., Phys. Rev. Lett.
112, 070404 (2014). Copyright 2014 by the American Physical Society.

The underlying mechanism for this is the quantum Zeno effect in the form discussed in section V C 1, i.e.,
a strong dissipative loss process on a given site will suppress coherent tunnelling processes that populate
sites with two particles, forming states that can potentially undergo loss.

As was noted above, the form we wrote based on the Bose-Hubbard model for particle loss in the lowest
band of an optical lattice requires a series of assumptions, especially neglecting coupling to higher bands
and off-site loss processes. In Ref. [103], a further theoretical analysis of the results of Yan et al. [23]
was performed, taking into account additional terms involving higher bands and off-site loss processes. In
Fig. 22, we reprint part of their theoretical comparison to experimental data, involving both the simple
single-band loss model discussed above, and a more general multi-band model. They find that both models
give quantitatively very similar results, and confirm that the quantum Zeno effect suppression of the losses
survives these extensions of the model.

These effects naturally generalise to other systems undergoing two-body loss in which the energy released
is larger than the trapping potential, and the resulting product particles are ejected from the system. For
example, group-II atoms in metastable excited states would undergo similar loss processes. In Ref. [133],
Foss-Feig et al. investigated this process for short-range s-wave collision processes. It was shown that
this can lead to an interesting effect, because many-body states that are completely anti-symmetric under
exchange of fermions in space do not undergo loss. If the Hamiltonian fulfils the requirement that spatially
symmetric states can be eigenstates of the Hamiltonian (which is true, e.g., for two-species fermions in a
harmonic trapping potential), then such states can be long lived. Then, if we begin with N particles in the

system in randomly chosen initial single-particle states, then of the order of
√
N particles are expected to

remain in a steady state. Moreover, because the resulting state is completely anti-symmetric in space, it
will be completely symmetric in spin, and could be used for Heisenberg-limited spectroscopy. This results
in a result for quantum-enhanced spectroscopy where the precision is not degraded by the loss of atoms,
but collisional shifts are substantially reduced, potentially affording substantial improvements in accuracy
[133].

Such collisional loss in group-II atoms has also been proposed as a means to implement dissipative
blockade gates for quantum computing [131, 132], in which the strong loss plays the role of an effective
interaction for the gate. Two-particle loss was also shown to generate pairing where Rydberg states are
designed to be distance-selective [98].

Collective excitation dynamics including two-body loss have already been measured for group-II atoms
in optical dipole traps [148]. In these experiments, high-stability lasers make it possible to probe a system
with relatively weak interactions using a Ramsey sequence on the clock transition, in such a way that
the interactions become dominant. These experiments are also remarkable in that collective quantum
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dynamics emerge in the spin degree of freedom, despite relatively high motional temperatures for the
atoms.

3. Three-body loss

While the suppression of two-body loss processes for molecules can be very important in stabilising
quantum gases in experiments with molecules, and is of substantial fundamental interest, for many atomic
species similar effects can be achieved by increasing the elastic two-body interactions (e.g., using Feshbach
resonances [272]). However, the potential to suppress three-body loss processes via a quantum Zeno
effect opens very different opportunities, because it implies the possibility to produce effective three-body
interactions, which are otherwise difficult to engineer in dilute quantum gases. Three-body loss for atoms
involves collisional processes in which two particles form a molecule, and given that the resulting binding
energy is large compared with the trap depth, the resulting molecule and atom will be ejected from
the system. Such suppression of three-body loss events was first discussed for bosons in optical lattices in
Ref. [104], and the first evidence for such a suppression was recently obtained in experiments with Caesium
atoms in an optical lattice in Ref. [105].

BEC

�e↵ ⌘2�e↵ ⌘2�e↵⌘4�e↵

a)

b)

FIG. 23: Schematic showing the continuous quantum Zeno effect in the case of three-body loss in an optical lattice.
If we have a large on-site rate of loss γ3, such that the tunnelling in the lowest Bloch band J � γ3, then tunnelling
processes that populate a single site with three particles (i.e., where a particle on one site tunnels onto an already
doubly-occupied site) will be suppressed. In this form, large on-site loss rates can counterintuitively lead to a
reduction in the overall rate of loss, and can act as an effective dynamical interaction, which suppresses triple
occupation.

The basic process, which is depicted in Fig. 23, takes the same form as that for two-body loss. In a 3D
optical lattice potential, if the on-site loss rate γ3 for three atoms is very large, then this strong dissipative
process can suppress coherent tunnelling that would otherwise populate triply occupied sites. In this
form, both the effective resulting rate of three-body loss, and three-body occupation on a lattice site can
be strongly suppressed. As with the case of two-body losses, in the limit that the binding energy released
in the collision is much larger than the trap depth, and the products of the collision are immediately
ejected from the lattice, the loss process can be described by a master equation. Restricting again to the
lowest band of an optical lattice, the equation of motion for the system density operator ρ is given by [104]

dρ

dt
= −i

(
Heffρ− ρH†eff

)
+
γ3

6

∑

i

a3
i ρ(a†i )

3, (81)

with the effective Hamiltonian given by

Heff = HBH − i
γ3

12

∑

i

(a†i )
3a3
i , (82)

where HBH is the Bose-Hubbard hamiltonian [eq.(48)], and γ3 is three-body loss rate for three particles
occupying a single lattice site.

In Ref. [104], the dynamics is considered beginning in a subspace where no lattice sites are triply
occupied. Analogously to the case of the two-level system in section V C 1, in the limit γ3 � J, U it is
possible to perform perturbation theory on the effective Hamiltonian projected with an operator P onto
the subspace of states with at most two atoms per site. In second order-perturbation theory the effective
model is given by the projected effective Hamiltonian [104]

HP
eff ≈ PHBHP − i

6J2

γ3
P
∑

j

c†jcjP. (83)



44

0.0 0.5 1.0 1.5 2.0
8

6

4

2

0

FIG. 24: Phase diagram for the Bose-Hubbard model with a three-body hard-core constraint, and U < 0. The
black curve represents the mean-field phase border, while red (light gray) and blue (dark gray) curves include shifts
due to quantum fluctuations in d = 2, 3. An Ising quantum critical point is predicted in the vicinity of unit filling.
The continuous supersolid is reached asymptotically at unit filling. Reprinted figure from S. Diehl, M. Baranov,
A. J. Daley, and P. Zoller, Phys. Rev. Lett 104, 165301 (2010). Copyright 2010 by the American Physical Society.

Here the operator cj = (a2
j/
√

2)
∑
k∈Nj

ak, with Nj denoting the set of nearest neighbours of site j. In

this way, the term PHBHP describes dynamics in a Bose-Hubbard Hamiltonian in the presence of the

constraint (a†i )
3 ≡ 0 [303], and corrections to this description describe three-body recombination, which

in the projected effective Hamiltonian begins from two particles present on a site neighbouring a single
particle. These three-body loss events occur at a rate ∝ J2/γ3, so that we see the continuous quantum
Zeno effect again arising naturally in the limit γ3/J � 1. For timescales that are shorter than the effective
loss timescale, we are left with dynamics described by a constrained Bose-Hubbard model.

This constrained Bose-Hubbard model exhibits particularly interesting many-body properties [104, 114,
303], beginning with the fact that the three-body constraint stabilises the system for attractive two-body
interactions U < 0. In the absence of the constraint, such attractive interactions would favour build-up
of all bosons on one site, but with the maximum on-site occupancy limited to two, the system undergoes
a second-order quantum phase transition. Using Gutzwiller mean-field techniques (Sec. IV B), this phase
transition can be described as a transition from a usual atomic superfluid with mean-field parameter
〈al〉 6= 0 (and also 〈a2

l 〉 6= 0) to a dimer superfluid, where 〈al〉 = 0, but 〈a2
l 〉 6= 0. In Fig. 24, we reprint

the phase diagram from Ref. [114], showing the phase boundary at zero temperature in mean-field and
including quantum fluctuations, as a function of U/(Jz), where z is the number of nearest neighbour
sites, and n, the filling fraction in the system. This phase diagram has been investigated in further
detail numerically and analytically [109, 111–113], and exhibits an Ising critical point between the atomic
superfluid and dimer superfluid phases near unit filling n = 1. For stronger attractive interactions, bound
dimers can form a phase with a coexistence of dimer superfluid and charge density wave order, in a type
of continuous supersolid [112, 114]. Similar related three-body physics for bosons has been studied in
a variety of contexts, including nearest-neighbour interactions that are realisable with polar molecules
[107, 117, 304, 305], and finite on-site three-body interactions [119, 306–311].

In an experiment real losses will also occur, making it important to model the complete dissipative
many-body dynamics. For this purpose, in Ref. [104], quantum trajectories techniques were first combined
with t-DMRG to solve the master equation (81). In this paper, quantum trajectories were used to study
the adiabatic preparation of a dimer superfluid state in the presence of three-body loss. Example results
are shown in Fig. 25, including ramps from an initial Mott Insulator state with a single atom per site
(Fig. 25b), and ramping in a superlattice as depicted in Fig. 25a, using a site-dependent energy offset εl,
as was defined in HBH+ in section V A. Figs 25b,c show the total energy 〈HBH〉 and total particle number
for example trajectories in a ramp that would adiabatically realise the ground state in the absence of
losses. The dashed lines show trajectories without particle losses, whereas the solid lines show examples
including losses. By propagating a state under the effective Hamiltonian, it is possible to determine for
each ramp type what the probability of having no losses will be, which is depicted as a function of time in
Fig. 25d. These results clearly demonstrate advantages for the superlattice ramp, because the superlattice
holds particles apart for a long time, and by beginning with a finite attractive interaction always includes
elastic interactions to help suppress three-body occupation. The ramp from the Mott insulator, in contrast,
passes through a regime of small coherent on-site interactions, where the loss is increased. In Ref. [104],
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FIG. 25: Dynamics of adiabatic ramps into a dimer superfluid regime. (a) We begin with (i) a Mott insulator state
(ramping U/J), and (ii) a state with pre-prepared dimers in a superlattice (removing the superlattice). (b)-(c)
The sum of kinetic (EK) and interaction (EI) energy and (inset) particle number as a function of time for two
example trajectories, one with no loss events (dashed lines) and one with several loss events (solid lines). Here,
(b) shows a ramp from U/J = 30 to U/J = −8, with U(t) = αJ/(100 + 3tJ) + γ, with α and γ ramp parameters,
and (c) shows a ramp with a superlattice potential, εl = V0 cos(2πl/3), where V0 ≈ 30J exp(−0.1tJ), adjusted so
that V0(tJ = 100) = 0, with fixed U/J = −8. In each case, γ3 = 250J . For (b), we use 20 atoms on 20 lattice
sites, for (c), 14 atoms on 23 lattice sites. (d) Plot showing the probability that no loss event has occurred after
time t for the ramps in (b) (dashed line) and (c) (solid). Reprinted figure from A. J. Daley, J. M. Taylor, S. Diehl,
M. Baranov, and P. Zoller, Phys. Rev. Lett 102, 040402 (2009). Copyright 2009 by the American Physical Society.

it is further shown that dimer superfluid order can survive some loss events, and that preparation of this
state via the superlattice ramp should be realistic for experimentally realisable parameters, especially in
Caesium.

These effects are also especially interesting for fermions in an optical lattice, where large three-body
loss rates have been measured for three-component Lithium gasses [118]. There it is found that the three-
body constraint induced for short times by the quantum Zeno effect will suppress formation of trimers for
attractive interactions [108, 110, 116], stabilising an atomic colour superfluid state with two-component
BCS pairing in a three-component Fermi gas [120, 121]. Quantum Zeno suppression generating effective
three-body interations has also been discussed for trapped gasses not in an optical lattice, including weakly
interacting Bose-Einstein condensates [106], and strongly interacting systems where Pfaffian-like states can
be formed via the induced effective interactions [115]. Such effective interactions can also stabilise p-wave
pairing in strongly interacting fermions [96].

4. Single-particle loss

Single-particle atomic losses can be generated and controlled in a number of forms in an optical lattice,
including photon scattering that drives atoms to momentum states with energy greater than the lattice
depth. In certain regimes, this can lead to quantum optical analogues, in which the trapped atoms
represent few-level systems, and atoms in untrapped states play the role of a radiation field [312, 313]. By
tuning the laser field that drives atoms out of the lattice, super-radience and non-Markovian emission of
atoms was predicted in Refs. [312, 313].

Local single-particle losses can be generated in experiments either by collisions with a background gas
[80], or deliberately using individual addressing with an electron beam [314] or with light in quantum gas
microscopes [315] that have single-site resolution in an optical lattice [316, 317]. As in the previous cases,
the energy transferred to atoms that are removed from the lattice in this manner is much larger than
the trap depth, and for these processes, a master equation analogous to eq. (77), but for single-particle
loss can be derived [124, 318–320]. Theoretically, this master equation has been solved using quantum
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FIG. 26: a) The electrons locally collide with the atoms constantly dissipating the BEC. b) Temporal resolved
signal from the ion detector. The bin size is 1 µs. Points are experimental data averaged over 1800 experimental
repetitions, while the solid curve is the numerical simulation (see text). After 5 ms we typically collect ' 450 ions.
Reprinted figure with permission from G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and
H. Ott, Phys. Rev. Lett. 110, 035302 (2013). Copyright 2013 by the American Physical Society.

FIG. 27: a) Theoretical curves of the number of ions produced in 5 ms as a function of U/~ = γ1(0) solving
equation (84) for different values of the beam width w [122]. The values of UM obtained using the approximate
expression given in the text are shown as open diamonds over the corresponding curves. b) Number of ions measured
after 5 ms of dissipation for a thermal cloud as a function of the EB current, with beam width w = 170(7) nm.
The solid line is the result of the corresponding numerical simulation using the molecular dynamics method. c)
Comparison between the theoretical curves of the number of produced ions as a function of I for the BEC and
the corresponding classical analogue (beam width w = 170(7) nm) [122]. Reprinted figure with permission from
G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V. Guarrera, and H. Ott, Phys. Rev. Lett. 110, 035302
(2013). Copyright 2013 by the American Physical Society.

trajectory techniques with t-DMRG [124] and a time-dependent Gutzwiller ansatz [320]. The dissipative
dynamics produces complex effects, including the generation of entanglement under appropriate conditions
[124, 319], and the ability to detect and control supersolid phases [320].

Recently, the quantum Zeno effect has been observed in experiments with Bose-Einstein condensates
subjected to local losses due to an electron beam [122, 123], in which atoms from the cloud are ionised
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FIG. 28: Schematic picture of atoms in an optical lattice immersed in a Bose-Einstein condensate of another species
that is not trapped by the lattice. Processes in which an atom in an excited band of the lattice decays to the
lowest band are generated by spontaneous emission of Bogoliubov excitations in the condensate. This process is
analogous to spontaneous emissions of photons, but takes place on much smaller energy and momentum scales,
allowing for tools such as laser cooling and optical pumping to be reworked in a new context. Figure adapted from
A. Griessner, A. J. Daley, S. R. Clark, D. Jaksch, and P. Zoller, New J. Phys 9, 44 (2007).

and detected as depicted in Fig. 26a. In the weakly interacting case, the dynamics under the effective
Hamiltonian can be modelled by a time-dependent Gross-Pittaevskii equation with an additional imaginary
term [122, 321],

i~
∂ψ(x, t)

∂t
=

(
−~2∇2

2m
+ Vext(x) + g|ψ(x, t)|2 − i~

γ1(x)

2

)
ψ(x, t). (84)

Here ψ(x, t) is the condensate wavefunction, obeying the constraint
∫
|ψ(x, t)|2dx = N(t), Vext(x) is an

external trapping potential, and γ1(x) describes the profile of the single-particle loss in space. In Figs. 26b
and 27, we reprint experimental and theoretical results from Ref. [122]. In Fig. 27a, the dependence of
the number of ions detected as a function of the strength of the electron beam is plotted, and it can be
seen that this clearly saturates in time, as a direct result of the quantum Zeno effect. This saturation is
observed clearly in Ref. [122], and is contrasted to the case of a thermal cloud for which the dynamics
are classical, and do not exhibit this effect is shown in Figs. 27b,c. These effects in weakly interacting
systems have also been discussed theoretically for the case of a two-mode Bose-Einstein condensate in a
double-well trap [321], and in the context of decoherence due to atom loss in bosonic Josephson junctions
[322, 323].

D. State preparation in driven, dissipative many-body systems

A key aspect of open systems as they appear in quantum optics involves the new tools to control quantum
systems that are provided by dissipation. In particular, optical pumping [32, 33] and laser cooling [36]
are dissipative processes that have become a key foundation for the majority of modern atomic physics
experiments. The general idea behind these procedures is always to engineer a dissipative process in such
a way that an arbitrary initial state of the system ρ0 is driven via dissipation [e.g., as described by a
master equation (6)] into a steady state that is a chosen pure state |Ψs〉, ρ(t → ∞) → |Ψs〉〈Ψs|. In this
process, entropy is removed from the system to the environment.

The idea of dissipative processes for state preparation and driving in quantum simulators has seen rapid
recent progress. In this section, we will give a brief summary of some key directions, beginning with
engineered dissipation in the presence of a reservoir gas, and going on to discuss implications of this for
dissipative driving towards important many-body states. For several of these topics, further details can
be found in the recent review on engineered dissipation and quantum simulation by Müller et al., Ref. [6].
The drive towards finding new means to cool many-body systems and prepare important many-body states
is particularly important in light of current experimental challenges to reach lower temperatures in order
to realise certain particularly interesting aspects of the many-body physics predicted for cold atoms in
optical lattices [80].

The example of engineered dissipation that is closest to the systems we have discussed up to now is
the case in which dissipation is produced and controlled for cold atoms in an optical lattice by immersing
the system in a reservoir gas of a second species of atoms [91]. This second species is not trapped by the
lattice, and is usually chosen to be in a Bose-Einstein condensate, in a broad trapping potential so that
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FIG. 29: Schematic picture of one excitation and decay step in Raman cooling in an optical lattice. (a) Atoms are
transferred from a region with high quasi- momentum |q| > 0 in the lowest Bloch band to the first excited band.
(b) The collisional interaction with the Bose-Einstein condensate atoms is switched on, the resulting decay of the
excited lattice atoms leads to a randomization of the quasi-momentum. Sequences of pulses, each one followed by
a decay time τc, efficiently excite all atoms outside a narrow region around q = 0. Repeating the sequence leads to
accumulation of atoms in the dark state region around q = 0, i.e., to cooling. Reprinted figure from A. Griessner,
A. J. Daley, S. R.. Clark, D. Jaksch, and P. Zoller, New J. Phys 9, 44 (2007). Copyright 2007 by IOP Publishing
Ltd and Deutsche Physikalische Gesellschaft.

the gas is almost uniform. In Refs. [87, 88, 91] a master equation is derived for this system, making the
assumption that the typical Bloch band separation in the lattice, ωg is much larger than the corresponding
energy scales in the reservoir gas, including its chemical potential, µR. In this scenario, the quantum optics
assumptions from section II B are satisfied because the Bloch band separation ωg plays the role of the large
energy and frequency scale, and the master equation is well-justified for realistic experimental parameters.

The resulting dissipative process is drawn schematically in Fig. 28. Atoms in higher bands of the lattice
are sympathetically cooled via density-density interactions with atoms in the reservoir gas, with the atoms
in the lattice decaying to the lowest band, while a Bogoliubov excitation is produced in the reservoir
gas. As ωg � µR, this excitation is typically a particle branch excitation of high energy [324], which can
be allowed to rapidly leave the trap, ensuring that the Markov approximation remains valid [91]. Also,
because the temperature of the reservoir gas, TR satisfies kBTR � µR � ωg, where kB is the Boltzmann
constant, excitations are not present to reheat lattice atoms to higher bands after they have decayed.

Moreover, while atoms in higher bands couple strongly to the reservoir, decaying on rapid timescales
∼ 1kHz for typical parameters in an optical lattice and Bose-Einstein condensate of 87Rb, atoms in the
lowest band couple very weakly, preventing re-heating of atoms within in the lowest band (of width 4J0).
This occurs because of a mismatch in the dispersion relation of a Bose-Einstein condensate and atoms in
the lowest band of the lattice, which in analogy to the Landau criterion for superfluidity [269, 324], prevents
energy and momentum conservation when a single atom in the lattice interacts with a single excitation
in the reservoir. Even in the case that these matched, the coupling constant would be small [87, 88], due
to the small structure factor of a Bose-Einstein condensate at low energies [269, 324]. Both the decay of
atoms in higher bands and the decoupling for atoms in the lowest band have recently been observed in
experiments with Rb atoms in state-dependent traps [89]. Similar effects have also been studied when
motional superposition states are prepared in experiments using Li atoms immersed in a Bose-Einstein
condensate of sodium [325]. In each of these experiments, the observed decay rates were in agreement
with the assumptions made in the derivation of the master equation [104].

This combination of behaviours for the atoms in the lattice is strongly mathematically and physically
analogous to spontaneous emissions into the vacuum modes of a radiation field. It immediately prompts
the question as to whether ideas from quantum optics can be re-used in this context, but now with two-
level atoms replaced by motional states or Bloch bands in the lattice, and photons being replaced by
Bogoliubov excitations in the reservoir gas. By repeating such ideas on the smaller momentum and energy
scales that are associated with excitations in a reservoir gas rather than photons, new possibilities for
control and cooling to lower temperatures might then be realised.

The first example of such a technique is a dark-state laser-cooling scheme based directly on an analogy
with Raman dark-state cooling, as proposed by Kasevich and Chu [326]. The key idea behind such schemes
such as that of Ref. [326] and also velocity-selective coherent population trapping [327], is that the desired
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state is engineered to be a dark state, which does not couple to laser pulses that would transfer the atoms
to a different internal state. A schematic diagram showing an analogous scheme for cooling non-interacting
atoms within the lowest Bloch band of an optical lattice [87, 88] is shown in Fig. 29.

The cycle proceeds in two steps: (i) Raman pulses are applied to transfer atoms from the lowest Bloch
band of the lattice to an excited Bloch band. Making use of the energy dependence on quasimomentum,
together with control over the detuning and the time-dependence of the pulses, these are engineered to
transfer only particles with large quasimomentum to the excited band – in particular, a narrow dark
state region near quasimomentum q = 0 is deliberately not excited. (ii) Coupling to the reservoir gas
(which can be left on if it is slower than the Raman pulse, but which can also be switched using Feshbach
resonances for appropriate atomic species [272]) is used to cause the atoms to decay to the lowest band.
The quasimomentum will be redistributed in this process, and depending on the relative mass of atoms
in the lattice and atoms in the reservoir gas, may be randomly distributed over the whole Brillouin zone
[88].

After repeating this cycle, atoms will begin to collect in the dark state region. Fundamentally, the
cooling power of this method is determined only by the selectivity with which the dark state region is not
excited, and the narrowness of this region. The final temperature can be much lower than that of the
reservoir gas, because exactly as in regular laser-cooling, we are upconverting the energy to be removed
from the system in such a way that it falls in an energy regime where there are no thermal excitations in
the reservoir. This also clarifies that the decoupling of atoms in the lowest band from the reservoir gas is
essential in this scheme, to prevent reheating of atoms already in the dark state.

There are many possible extensions that can be built upon this type of technique. In Ref. [90], a variant
of this method for loading fermions in a state-dependent lattice was discussed. In this proposal, fault-
tolerant loading of fermions in an optical lattice was investigated, in which particles are initially coupled to
a higher Bloch band, and then cooled to the lowest band by creation of particle-hole pairs. In Refs. [92, 93],
this was further extended to certain classes of many-body systems. By using additional internal atomic
levels, schemes were devised to use a reservoir gas to implement a master equation with jump operators

cm ≡ c〈l,j〉 = (a†l + a†j)(al − aj), (85)

which results in a coherent driving of the system into a Bose-Einstein condensate on the lattice, i.e., is

a designed master equation to produce a steady state ∝ (
∑
l a
†
l )
N |vac〉. These ideas were also applied to

implement a master equation for which the η-pairing states [328] for two-species fermions are the steady
state [92, 93].

In Refs. [94, 95], a master equation was found that – with no direct or induced interactions between
particles – could produce either antiferromagnetic states, or pairing states for two-component fermions.
In that case, the dissipative dynamics could be induced with the help of spontaneous emission processes
in group-II atoms, which can exhibit Pauli blocking for fermions [97]. Quantum trajectory methods
were employed together with exact diagonalisation methods (see section IV) in order to demonstrate the
time-dependent formation of the corresponding ordered states. Diehl, Bardyn, and their collaborators
[99, 100] also constructed master equations that would drive a system into topologically protected states.
Specifically, they investigated atomic quantum wires coupled to a reservoir gas, and showed that with a
dissipative drive, dissipative pairing gaps would enforce the isolation of Majorana edge modes [99].

In this context, it is also both interesting and important to understand the competition between dis-
sipation and coherent dynamics. Diehl et al. [136] treated the effect of interactions in the Hamiltonian
on dissipative driving towards a Bose-Einstein condensate based on the jump operators in eq. (85), and
found that competition between coherent and dissipative dynamics produced a mixed state in which the
temperature was effectively controlled by the size of the interactions. Such competition can result further
in dissipative phase transitions [136–138], and some of the resulting transitions can form new types of
universality classes for dissipative phase transitions, which can be studied with functional renormalization
group methods [149, 150].

E. Connections with other dissipative many-body systems

In addition to cold atoms and molecules in optical traps, there are a wide variety of AMO and solid
state systems to which the ideas discussed in this review may be applied, or are already being applied. In
this section we briefly summarise these corresponding developments.

A prime example of a system in which dissipative quantum simulation has already been implemented
is the case of trapped ions [6, 72], which are also one of the most advanced systems in terms of control
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over single particles and few-particle coupling for quantum computing [8, 17]. Recent experiments have
made use of this extreme control to demonstrate combinations of coherent and dissipative maps in digital
quantum simulation [168, 169]. In these experiments, qubits are prepared and then dynamical elements
are applied as quantum gates, demonstrating – amongst other attributes – the dissipative preparation
of entangled states, and simulations corresponding to many-body spin interactions. These experiments
constitute a wonderful starting point for further high-precision studies of dissipative processes in many-
particle systems. This is further enhanced by recent developments in realising analogue quantum simulation
of spin chains, including transverse Ising and XY models with variable-range interactions, in these systems
[329–331]. Dynamics in such setups were recently demonstrated in 1D chains [332], and also in 2D arrays
[333]. The possibility of combining these advances with control over dissipation is an exciting future
direction. Controlled dissipative processes are also useful in a broader quantum computing context, where
states can be protected in quantum computations [125, 126] or in quantum memories [127] by carefully
engineered dissipation.

Another system where dissipation is inherent in the most fundamental properties involves Bose-Einstein
condensates in optical cavities [151, 334]. Recent observation of the Dicke phase transition [152–154] and
related optomechanical effects, including the detection of quantised motion and non-classical output light
[155, 157] has opened new possibilities for studying many-body dissipative dynamics. This could include
the realisation of more complicated collective dissipative spin models [335], and quantum phases associated
with the motion of atoms within the cavity [156, 158, 159]. Atoms in optical lattices within the cavity
have also been discussed, including the potential use of cavity fields as a probe to detect detect atom
number statistics [336, 337], or the use of cavity fields for state preparation [338]. Bose-Hubbard dynamics
in the presence of quantised light fields have also been discussed in Refs. [339, 340]. In this context,
multimode cavities provide an interesting future direction, and can be used to mediate interactions that
give rise to frustration and glassiness [160–162]. Over the past few years, dissipative dynamics have also
been discussed in a variety of other novel photon-atom systems, as new experimental directions emerge
that offer opportunities to realise strongly-interacting systems. This have included studies of strongly
interacting photons [163–167], dissipative state preparation and quantum simulation in optomechanical
arrays [170, 171], and also the potential for photon condensation generated via engineered dissipation in
a circuit QED system [341].

There has similarly been a lot of recent interest in systems of atoms in excited Rydberg states, including
possibilities to form crystaline states, and other long-range correlations. In the context of these excitations,
several groups have become interested in the effect of decay of the Rydberg levels on the spatial patterns
being realised. Their investigations have included the build-up of spatial correlations in the presence of
dissipation together with laser driving of the atoms [142–146], the effects of non-local dissipation [98, 147],
and studies of resulting glass-like dynamics and corresponding structures that emerge [139–141].

Recently, Lee and Chan [342] have studied the steady-state associated with evolution under a non-
Hermitian Hamiltonian. Such dynamics can be obtained by continuous measurement, choosing a measure-
ment on the environment associated with a particular type of quantum jump, and then post-selecting on
cases where jumps have now occurred. There are possibilities to explore such dynamics in a range of AMO
systems, including cold atoms in cavities or trapped ions, especially if the dissipation can be heralded by
a change in the internal state of an atom.

Also going beyond these AMO systems, there have been several recent treatments of transport systems
and dynamics of spin models with open quantum systems [343–349], including applications of quantum
trajectories to solve a master equation for spin dynamics. These studies have also employed matrix
product state methods for such calculations [350, 351]. Quantum trajectory methods have also been used
to investigate open system dynamics for ions traversing amorphous solids [352, 353]. This is based on
an approach with a master equation that allows probability flux for particles to be exchanged with the
environment [354].

VI. SUMMARY AND OUTLOOK

In this review we have seen how approaches from quantum optics to treating dynamics in open quantum
systems has become important for our understanding of strongly interacting AMO systems. This opens
many new opportunities to look at fundamental properties of open many-body systems, especially dynamics
far from equilibrium, decoherence of states, and the back-action of continuous measurements. Not only is
an understanding of dissipative dynamics necessary to treat processes such as light scattering and loss that
are naturally present in quantum simulators, but the possibility to understand and engineer dissipative
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coupling provides an interesting route towards realisation of lower temperatures and important strongly-
interacting many-body states, ranging from paired states of fermions to topological order.

At the same time, this is also a relatively new subfield with many open questions, ranging from specific
questions such as the effect of spontaneous emissions on dynamical processes used to prepare states with
cold atoms in optical lattices, to broader questions such as to what extent and under which conditions it
is possible to identify universality classes for the steady-state of driven, dissipative many-body systems.
While this review has focussed on markovian dissipative systems, which are prevalent in quantum optics
and AMO implementations, one important area for future development will be the further development
of these ideas in non-markovian regimes. Already there has been a great deal of progress on treating non-
markovian effects in open systems [1, 355], including through the extension of master equation techniques
[356, 357] and stochastic wavefunction methods [358–360] on expanded Hilbert spaces. In terms of quantum
trajectories methods, there have been various extensions to the method to include memory effects of the
reservoir for single-particle systems, beginning with work by Imamoglu in Ref. [361], which involved the
coupling of a small quantum system to a damped cavity with a finite lifetime, and leading up to recent direct
extensions to quantum trajectories methods on the Hilbert space of the reduced system [362, 363]. Recent
studies have started combining this with Bose-Einstein condensates, including work where atoms are used
as a probe immersed in the condensate [364, 365]. Combined with strongly interacting systems, such ideas
may open new pathways for investigations of fundamental dynamics, or provide practical tools for out-
of-equilibrium preparation of many-body states as discussed in section V. Extensions to non-markovian
systems may also bring new opportunities for the study of solid-state systems via these techniques [1].

In each of the ways described in this review, recent advances in AMO experiments and in theoretical
tools are opening new opportunities to combine ideas from quantum optics and many-body physics. As
discussed at the end of section V E, numerical and analytical techniques with open quantum systems and
quantum trajectories methods are also beginning to find applications not only in quantum simulators,
but also outside the traditional AMO context. Understanding and even tailoring the dynamics of open
systems will in this way lead to better control over a wide variety of systems, and to new possibilities to
explore many-body physics in and out of equilibrium.
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Appendix A: Continuous measurement and physical interpretation of trajectories

In this appendix, we return to the foundations and interpretation of the quantum trajectory methods.
Specifically, we will outline how the quantum trajectories interpretation of dissipative processes can be
derived and understood from the perspective of continuous measurement as it is discussed in quantum
optics. This theory was developed initially in the context of photodetection, and the inference of a
conditional evolution of a pure state wavefunction by considering quantum jumps (see, e.g., [192, 366–
369]).

We consider a generic system interacting with a bath as in section II A. In this section, we will follow
an exposition similar to that given by Gardiner and Zoller [2], generalising their approach to multiple
interaction channels. In the quantum optics context, these channels can be, e.g., different polarization
states of a photon. For our many-body systems, they will often correspond to coupling to spatially
separated parts of the reservoir - e.g., in the case of master equations where particles scatter particles from
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different lattice sites or are lost from particular sites, each channel can reflect processes in a particular
lattice site provided the correlation length associated with excitations in the reservoir is small compared
with the lattice spacing.

1. Interaction Hamiltonian

We begin by rewriting the interaction Hamiltonian between the system and the bath in a time-dependent
form, transforming

Hint = −i~
∑

l

∫ ∞

0

dω κl(ω)
[
x+
l bl(ω)− x−l b

†
l (ω)

]
(A1)

into a rotating frame, i.e., an interaction picture in which the time-dependence of the operators incorporates
the time-dependence of the combined Hamiltonian Hsys +Henv. The transformed interaction Hamiltonian

H̃ int(t) is given by

H̃ int(t) = i~
∑

l

∫ ωsys+ξ

ωsys−ξ
dωκl(ω)

[
b†l (ω)ei(ω−ωl)tx−l − x+

l bl(ω)e−i(ω−ωl)t
]

(A2)

≡ i~
∑

l

√
γl

(
b†l (t)x

−
l − x+

l bl(t)
)
, (A3)

where we have used the fact that [Hsys, x
±
l ] ≈ ±~ωlx±l , and we have denoted the interval of frequencies

over which the system couples to the environment to be bounded in each case by some frequency scale
ξ, based on a rotating wave approximation [2]. Based on the frequency independence of the interaction
constant (which amounts to the first part of the Markov approximation), we replace

κl(ωl)→
√
γl
2π
,

and we define

bl(t) =
1√
2π

∫ ωl+ξ

ωl−ξ
bl(ω)e−i(ω−ωl)tdω. (A4)

2. Separation of timescales

We note that the commutator of these operators,

[
bl(t), b

†
l′(t
′)
]

= δll′

[
1

2π

∫ +ξ

−ξ
dωe−iω(t−t′)

]
= δll′δξ(t− t′), (A5)

where δξ(t − t′) denotes a slowly-varying Dirac delta function, which can be treated as a regular delta
function provided that the timescale |t − t′| � 1/ξ. This will be a key condition for the interpretation
of the dynamics, and essentially will require that the timescales we consider are always much longer than
1/ξ. If we have remaining terms in the system Hamiltonian within this transformed picture, then we will
denote them as H0. For two-level atoms, for example, H0 would contain coupling elements at frequencies
Ω0 and detunings ∆. Adding these scales in, we now have a clear hierarchy of frequency/energy scales in
this problem,

Ω0,∆, γl � ξ � ωl.

Note that this hierarchy implies all of the standard three approximations - the second inequality implies the
rotating wave approximation, and the first inequality implies the Born approximation. We have already
made the first Markov approximation, and we will later see how these inequalities imply the second part
of the Markov approximation.
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Using these definitions, we now write a state vector for the complete system of the system and the bath,
which obeys the Schrödinger equation

d

dt
|Ψ(t)〉 = − i

~
Htot|Ψ(t)〉

and evolves from an initial condition where the system and the bath are in a product state, i.e., |Ψ(0)〉 =
|ψsys〉⊗ |vac〉, where |vac〉 denotes the vacuum state in the environment (note that this can be generalised
straight-forwardly to other conditions, especially thermal states. We thus obtain the equation of motion:

d

dt
|Ψ(t)〉 =

{
− i

~
H0 +

∑

l

[√
γlb
†
l (t)x

−
l −
√
γlx

+
l bl(t)

]}
|Ψ(t)〉 (A6)

We then consider integration of the Schrödinger equation over time steps ∆t so that

Ω0,∆, γl � 1/(∆t)� ξ.

This choice of time step will allow the use of the Born approximation, and the computation of the dynamics
in perturbation theory for each time step, while allowing the use of the rotating wave approximation. As
mentioned in section III D, this choice of time step is necessary in order to allow the usual approximations
in AMO systems to be valid, and as some authors have pointed out [66], making measurements faster than
this rate would result in a quantum Zeno effect for all of the dynamics due to the system-bath interaction,
leading to non-sensical results.

3. Perturbation expansion of the total state

We then write the perturbation expansion up to second order for the time evolved state over a short
time ∆t:

|Ψ(∆t)〉 =

{
1− i

~
H0∆t+

∑

l

[
√
γl x
−
l

∫ ∆t

0

b†l (t) dt−
√
γx+

l

∫ ∆t

0

b(t) dt

]

+

(
− i

~

)2∑

l

γlx
+
l x
−
l

∫ ∆t

0

dt

∫ t2

0

dt′ bl(t)b
†
l (t
′)

}
|Ψ(0)〉, (A7)

where we note that all of the second order terms for l 6= l′ vanish because of the action of the operator
bl(t) on the vacuum state for the environment contained in |Ψ(0)〉. We must keep the remaining term,
because for ∆t� 1/ξ,

∫ ∆t

0

dt

∫ t

0

dt′ bl(t) b
†
l (t
′)|vac〉 =

∫ ∆t

0

dt

∫ t

0

dt′
[
bl(t) , b

†
l (t
′)
]
|vac〉

=

∫ ∆t

0

dt

∫ t

0

dt′ δξ(t− t′)|vac〉

=
1

2
∆t|vac〉. (A8)

This second order term is then the origin of our effective Hamiltonian, as we can combine the system
Hamiltonian with the original second order term to give

Heff = H0 −
1

2

∑

l

γlx
+
l x
−
l

in the expression

|Ψ(∆t)〉 =

{
1− i

~
Heff ∆t+

√
γ x−l ∆B†l (0)

}
|Ψ(0)〉, (A9)

where the increment operators are defined [2] as

∆Bl(t) :=

∫ t+∆t

t

bl(t
′) dt′.
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4. Increment operators

These increment operators obey the commutation relations

[
∆Bl(t),∆B

†
l′(t
′)
]

= δll′

∫ t+∆t

t

∫ t′+∆t

t′

[
bl(s), b

†
l′(s
′)
]
ds ds′

= δll′

∫ t+∆t

t

∫ t′+∆t

t′
δξ(s− s′) ds ds′

=

{
δll′∆t t = t′

0 t 6= t′
. (A10)

As a result, we can think of each of these operators ∆B†l as a creation operator for an excitation in the
environment, produced in mode l in the time interval (t, t + ∆t]. Because of the commutation relations,
excitations in non-overlapping time intervals are orthogonal, by which we see that action of the Markov
approximation, in so far as excitations in the reservoir at different times (that differ by more than 1/ξ)
are independent. In order to connect to photon counting statistics, number operators can be constructed
for the modes l at different times t, with

nenv,l(t) =
∆B†l (t)√

∆t

∆Bl(t)√
∆t

, (A11)

and measurement of these operators amounts to getting time-dependent excitation counts in each mode
of the environment (naturally course-grained over the timescale ∆t.

In this expression, the different channels l can correspond to different polarisation channels for photode-
tectors, or, e.g., in the case of light scattering for many atoms in an optical lattice, could correspond to
photons scattered in different parts of the system separated by a larger distance than λ/(2π). Detection
of this would correspond to polarisation-resolved or spatially-resolved detection of photons.

5. Effect on the system and measurement of the environment

In order to interpret the above result, and to see more clearly the interpretation in terms of quantum
trajectories that appears, we can rewrite the state after the first step as

|Ψ(∆t)〉 =

[
1− i

~
Heff ∆t+

∑

l

√
γlx
−
l ∆B†l (0)

]
|Ψ(0)〉 (A12)

=

(
1− i

~
Heff ∆t

)
|ψ(0)〉 ⊗ |vac〉+

∑

l

√
γl∆tx

−
l |ψ(0)〉 ⊗∆B†l (0)|vac〉. (A13)

we can interpret this state as a superposition of states with either no excitations in the environment, or
states with one excitation in one of the modes l produced in the first time interval.

If we now make a measurement of the state of the environment, we will see one of two things occurring.

Either, we will observe an excitation in mode l, ∆B†l (0)|vac〉, in which case we obtain the state

|ψ(∆t)〉 =
x−l |ψ(0)〉
||x−l |ψ(0)〉|| .

The probability of obtaining this state is given by γl∆t||x−l |ψ(0)〉||2 for each possible channel l. Otherwise,
we will observe a vacuum state, in which case the state we obtain is

|ψ(∆t)〉 =

(
1− i

~Heff ∆t
)
|ψ(0)〉∥∥(1− i

~Heff ∆t
)
|ψ(0)〉

∥∥ , (A14)

which we obtain with probability
∥∥(1− i

~Heff ∆t
)
|ψ(0)〉

∥∥2
. As we noted in section III D, we always obtain

information about the state, whether or not an excitation is detected.
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If on the other hand we do not measure the state of the environment after the step, then we can trace
over the environment, and obtain a reduced density operator for the system

ρ(∆t) = trenv|Ψ(∆t)〉〈Ψ(∆t)|

=

(
1− i

~
Heff ∆t

)
ρ(0)

(
1− i

~
Heff ∆t

)†
+
∑

l

γlx
−
l ρ(0)x+

l ∆t, (A15)

from which we can infer the evolution under the master equation.
Further integration steps have similar actions, because the increment operators ∆Bl(t) from different

time steps commute [2]. In this way, the integration can be pieced together in each step, and the procedure
outlined in section III E directly recovered.

6. Further interpretation

Through the application of continuous measurement theory [2], we therefore see how a quantum tra-
jectories interpretation can be built up in a system where we have the ability to measure certain modes
of the environment, and also how the individual approximations in the quantum optical system give rise
to the simplified form of the master equation. This derivation serves to illustrate the key aspects of the
physical interpretation of quantum trajectories described in section III D. It also makes it clear how we
can think of continuous measurement of the environment (where the measured operators must necessarily
be Hermitian), but nonetheless obtain non-Hermitian jump operators for the system.

If it is possible to measure different modes of the environment, then we can determine exactly which type
of quantum jumps occurred, and ascribe a clear physical meaning to the individual trajectories. This was
first done in this form in the context of photon counting [69]. When we cannot ascribe a direct physical
interpretation, then the average over the trajectories reproduces the corresponding master equation, and
quantum trajectories still performs well as a means to simulate this. As also mentioned in III D, there
are some situations where it may not be necessary to measure the environment directly, if the existence
of particular jumps, or non-existence of particular types of jumps can be inferred from the state of the
system. This type of postselection can be very useful, as it can be applied to measurements such as in the
case of particle loss in many-body systems (section V C). This would allow us, e.g., to distinguish cases
where loss events had occurred from the dynamics under the effective Hamiltonian Heff in the absence
of loss, postselecting on those times where the initial atom number remained conserved. This type of
measurement postselection has even been implemented in a quantum gas microscope experiment, in the
determination of string order parameters in the Bose-Hubbard model, to realise effective initial states of
much lower temperature than would otherwise be achievable [370].
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[79] R. Jördens et al., Quantitative Determination of Temperature in the Approach to Magnetic Order of Ultracold

Fermions in an Optical Lattice, Phys. Rev. Lett. 104 (2010), p. 180401.
[80] D.C. McKay and B. DeMarco, Cooling in strongly correlated optical lattices: prospects and challenges, Reports

on Progress in Physics 74 (2011), p. 054401.
[81] H. Pichler, A.J. Daley, and P. Zoller, Nonequilibrium dynamics of bosonic atoms in optical lattices: Decoherence

of many-body states due to spontaneous emission, Phys. Rev. A 82 (2010), p. 063605.
[82] D. Poletti, J.S. Bernier, A. Georges, and C. Kollath, Interaction-Induced Impeding of Decoherence and Anoma-



58

lous Diffusion, Phys. Rev. Lett. 109 (2012), p. 045302.
[83] D. Poletti, P. Barmettler, A. Georges, and C. Kollath, Emergence of Glasslike Dynamics for Dissipative and

Strongly Interacting Bosons, Phys. Rev. Lett. 111 (2013), p. 195301.
[84] H. Pichler, J. Schachenmayer, J. Simon, P. Zoller, and A.J. Daley, Noise- and disorder-resilient optical lattices,

Phys. Rev. A 86 (2012), p. 051605.
[85] H. Pichler, J. Schachenmayer, A.J. Daley, and P. Zoller, Heating dynamics of bosonic atoms in a noisy optical

lattice, Phys. Rev. A 87 (2013), p. 033606.
[86] J. Schachenmayer, L. Pollet, M. Troyer, and A.J. Daley, Spontaneous emission and thermalization of cold

bosons in optical lattices, Phys. Rev. A 89 (2014), p. 011601.
[87] A. Griessner, A.J. Daley, S.R. Clark, D. Jaksch, and P. Zoller, Dark-State Cooling of Atoms by Superfluid

Immersion, Phys. Rev. Lett. 97 (2006), p. 220403.
[88] ———, Dissipative dynamics of atomic Hubbard models coupled to a phonon bath: dark state cooling of atoms

within a Bloch band of an optical lattice, New Journal of Physics 9 (2007), p. 44.
[89] D. Chen, C. Meldgin, and B. DeMarco, Bath-induced band decay of a Hubbard lattice gas, arXiv:1401.5096

(2014).
[90] A. Griessner, A.J. Daley, D. Jaksch, and P. Zoller, Fault-tolerant dissipative preparation of atomic quantum

registers with fermions, Phys. Rev. A 72 (2005), p. 032332.
[91] A.J. Daley, P.O. Fedichev, and P. Zoller, Single-atom cooling by superfluid immersion: A nondestructive

method for qubits, Phys. Rev. A 69 (2004), p. 022306.
[92] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, and P. Zoller, Quantum states and phases in driven

open quantum systems with cold atoms, Nat Phys 4 (2008), pp. 878–883.
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