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Abstract

In this paper we couple collocated Boundary Element Methods (BEM) with unstructured analysis-

suitable T-spline surfaces for solving a linear Boundary Integral Equation (BIE) arising in the

context of a ship-hydrodynamic problem, namely the so-called Neumann-Kelvin problem, following

the formulation by Brard (1972) [1] and Baar & Price (1988) [2]. The local-refinement capabilities

of the adopted T-spline bases, which are used for representing both the geometry of the hull and

approximating the solution of the associated BIE, in accordance with the Isogeometric concept

proposed by Hughes et al. (2005) [3], lead to a solver that achieves the same error level for many

fewer degrees of freedom as compared with the corresponding NURBS-based Isogeometric-BEM

solver recently developed in Belibassakis et al. (2013) [4]. In this connection, this paper makes a

step towards integrating modern CAD representations for ship-hulls with hydrodynamic solvers of

improved accuracy and efficiency, which is a prerequisite for building efficient ship-hull optimizers.

1. Introduction

Wave-making resistance is a very important component, which may contribute up to 50% - or

even more - to the total resistance of a ship, especially for relatively “full” hull forms and/or at

high speeds. Experience has shown that the wave-making resistance component is quite sensitive

to changes to hull-form shape and significant reduction can be achieved without affecting cargo

capacity. During the last 50 years, the interest in numerical methods for calculating ship wave

resistance has been constantly growing. Computations are performed using a variety of techniques,

ranging from the simple Michell’s thin-ship theory [5] to extremely complex and costly methods

such as the fully non-linear Reynolds Averaged Navier Stokes Equations (RANSE) [6, 7, 8]; see

the reports by the International Towing Tank Conference ([9, 10, 11]) and the references cited

therein.
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In all proposed methods a CAD model of the ship hull is required. However, analysis-suitable

models cannot be, in general, automatically derived from CAD models. Data exchange between

CAD and analysis methods requires many time-consuming, preparatory steps. For example, the

popular meshing approach is generally time consuming and provides only an approximation of

the exact CAD geometry. Furthermore, a recalculation of the generated mesh is required for

even slight changes in the exact geometry. Thus, the lack of geometric exactness along with the,

generally, cumbersome mesh regeneration render the requirements for rapid convergence and/or

high precision prohibitive. These deficiencies in the current engineering analysis approach also

preclude successful application of other procedures such as design optimization. In this case, the

CAD-geometry-to-mesh mapping needs to be automatic and tightly integrated with the analysis

solver and the optimizing environment. Enabling the automatic generation of geometrically exact

and analysis suitable models could pave the way towards overcoming the aforementioned barriers.

This aim can be achieved by appealing to IsoGeometric Analysis (IGA), introduced by Hughes

et al. [12, 3] and Cottrell et al. [13, 14], which provides a direct and tight link between CAD

and Computer Aided Engineering (CAE). This link is achieved by using the very same basis for

representing both the geometry and the physical quantities employed in the analysis.

A number of candidate geometry representations can be used in the context of IGA. The

geometrical representation, that is so far prevailing in CAD industry, is NURBS (Non-Uniform

Rational B-Splines) [15]. NURBS representations offer: 1) convenience in modeling free-form

parametric surfaces, 2) exact representation of all quadratic curves and surfaces that frequently

occur in Mechanical-Engineering Design and 3) availability of many efficient and numerically-stable

algorithms for their evaluation. NURBS also possess some mathematical properties that are useful

from the analysis point of view: a) refinability, such as the conventional h- (knot insertion) and

p- (degree elevation) refinement schemes, as well as a more flexible refinement pattern, the so-

called k-refinement, which is suitable for higher-order approximations, and b) high smoothness,

i.e., Cp−1-continuity for NURBS of degree p ≥ 2, which prohibits derivative-jumps, thus, yielding

more accurate results.

Isogeometric Analysis has been so far mainly applied in the FEM context, [13, 3], where

the basic preprocessing step is to develop good quality two- and three-dimensional (trivariate)

representations of the computational domain. The latter is far from being a trivial problem and

although different methods have been developed, e.g., lofting, swept-volume parameterization,

Coons patches, etc., the literature is still lacking of a general and mature methodology. On the

other hand, this approach differs from that adopted in contemporary CAD systems, namely the

so-called Boundary representation (B-rep) of solids. In order to overcome these difficulties, a new

approach for exploiting Isogeometric analysis has been presented. It is based on the boundary

integral formulation of the problem considered, where the governing equations and the boundary
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conditions of the problem are transformed into a boundary integral equation (weakly singular

or singular) on the boundary (or a portion of the boundary) using the Green’s function of the

problem to be treated [16, 17, 4, 18, 19, 20, 21]. This approach is widely used in free-surface

hydrodynamics, and especially in exterior potential-flow problems, due to the infinite extent of

the fluid domain.

In the above context, our previous work [4], has demonstrated the applicability and advantages

of the Isogeometric approach to free-surface problems and especially to a linearized version of the

wave-resistance problem, the so called “Neumann-Kelvin wave-resistance” problem, as initially

proposed by Brard (1972) [1]. In this version of the problem, the potential flow theory is adopted

and the non-linear effects stemming from the presence of the unknown free surface are neglected,

while the three-dimensional character of the problem is retained. For the numerical solution of

the resulting linear problem a Boundary-Element Method (BEM) was formulated, implemented

by means of a Kelvin-wave source distribution over the wetted part of the hull and its intersection

with the undisturbed free surface [2]. A multi-patch tensor product NURBS surface was used for

the representation of the wetted ship hull boundary and the very same NURBS basis was used

for the approximation of the unknown source density. The Isogeometric scheme was implemented

by collocating at the images of the Greville abscissae of the associated knot vectors and knot

insertion (h-refinement) is used as our refinement strategy. The enhanced accuracy and efficiency

of the proposed NURBS based IsoGeometric Analysis BEM (IGA-BEM) has been demonstrated

by comparing the numerical results obtained for a variety of geometrical configurations against

analytical solutions and/or experimental data (where available) as well as predictions provided by

low-order panel methods and higher-order BEMs. The tested configurations included a prolate

spheroid in an infinite domain, a three-axial ellipsoid in a semi-infinite domain, a submerged

prolate spheroid under the free surface and three free-surface piercing hulls, namely the standard

Wigley hull, a Series 60 and the so-called KRISO container ship hull [22].

However, the use of NURBS in Isogeometric Analysis exhibits some deficiencies:

1. Multi-patch representations suffer from gaps and overlaps at patch boundaries.

2. Due to their tensor-product nature a large number of NURBS control points is not unlikely

to be superfluous, in the sense that they contain no significant geometric information. As

a consequence, the resulting basis for approximating the physical quantities of interest, is

“overloaded” with redundant detail in areas where these quantities are expected to exhibit

low variation.

3. Refinement requires the insertion of entire rows/columns of control points, thus increasing

complexity and implementation effort.

3
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4. The limitations of rectangular topology lead to multi-patch representations when complex ob-

jects, as e.g., ship hulls, are under consideration. This limitation has an additional side-effect

as multi-patch configurations can only secure a C0 basis continuity across patch boundaries,

canceling, in this way, the intrinsic higher smoothness of a single NURBS patch.

T-splines [23, 24] constitute a recently developed generalization of NURBS technology that

removes most of the above mentioned NURBS deficiencies. It is worth noticing that in the

computer-aided ship-design literature one can already cite works arguing that NURBS do not

offer the proper frame for ship design [25] and aspire to alternative representations, which include

T-splines [26]. The main advantages of T-splines technology are:

1. T-splines permit representation of complex objects with a single T-spline patch.

2. A T-spline control grid is allowed to have partial rows of control points, terminating in

T-junctions, which allows for local refinement.

3. T-junctions permit the significant reduction of superfluous control points.

4. It is possible to merge multiple NURBS patches into a single, gap-free T-spline.

Our aim in the present work is to make a first step towards exploiting the advantages of T-

splines technology in Isogeometric analysis (TS-IGA) for ship hydrodynamic analysis. The higher

smoothness of a single T-spline surface along with the ability for local refinement allow us to

achieve enhanced convergence rates with considerably fewer degrees of freedom when compared to

our prior NURBS approach. This will permit our T-spline based IGA-BEM solver to be embedded

with significantly lower cost in any optimization process for designing ship hulls with minimum

wave resistance.

The remaining part of this paper is structured in 4 sections. Section 2 presents the formulation

of the problem while section 3 provides a brief overview of T-splines. We then proceed with

the formulation of the problem in the Isogeometric T-spline BEM (TS-IGA-BEM) context and we

conclude our work with two numerical examples demonstrating the achieved enhanced convergence:

a prolate spheroid in infinite domain and a surface piercing ship hull.

2. Formulation of the problem

Let Oxyz be a right-handed rectangular coordinate system with the z−axis directed vertically

upwards; see Figure 1. We consider the flow of a uniform stream with velocity U = (−U, 0, 0) of

an ideal fluid with a free surface incident upon a surface piercing or fully submerged body D.

It is convenient to decompose the velocity potential Φ in the form:

Φ = −Ux+ ϕ, (1)

4
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Figure 1: Geometric configuration of the Neumann-Kelvin problem for a surface piercing body.

where ϕ is the disturbance potential due to the presence of the submerged body. The disturbance

potential must satisfy the Laplace equation (see, e.g., [2]):

4ϕ = 0 in D+, (2)

where D+ denotes the unbounded fluid domain outside the body D limited above by the plane

z = 0. The body boundary condition is

∂ϕ

∂n
= −U · n on S, (3)

where n = (nx, ny, nz) is the unit normal directed inwards with respect to the domain D+ and

S = ∂D is the boundary of the body D. The free-surface conditions satisfied on the unknown free

surface z = η(x, y) are:

(i) The kinematic condition, stating that on the free surface the flow velocity must be tangential:

(−U + ϕx)ηx + ϕyηy − ϕz = 0. (4)

(ii) The dynamic condition, stating that the pressure on the free surface must be constant:

gη − Uϕx +
1

2
(ϕx

2 + ϕy
2 + ϕz

2) = 0, (5)

with g denoting the gravitational acceleration. In the theory of infinitesimal waves the above

conditions on the free surface are linearized by neglecting products and squares of “small” quan-

tities (stemming from the fact that the disturbance velocities are considered to be of higher order

with respect to U) and by applying the resulting equations on the undisturbed free surface z = 0

5
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instead of the unknown free surface z = η(x, y). Thus, equations (4) and (5) become, respectively,

Uηx + ϕz = 0, (6)

gη − Uϕx = 0, (7)

which can be combined to form the following linear free-surface condition:

ϕxx + kϕz = 0 on z = 0. (8)

Here k = g/U2 is the characteristic wavenumber, controlling the wavelength of the transverse ship

waves and is proportional to the inverse square of the corresponding Froude number F = U/
√
gL,

with L denoting the maximum length of the body.

Finally, a radiation condition must be imposed in order to ensure existence and uniqueness of

the disturbance potential. This condition expresses that waves radiated by the body are directed

downwards and there are no upstream waves. Mathematically, this condition is expressed as

follows:

ϕ =

 O (1/|x|)
o(1)

as |x| → ∞, if

 x < 0 (downstream),

x > 0 (upstream).
(9)

Following the approach initiated by Brard (1972) [1] and explored in [2] for the linearized

Neumann-Kelvin wave-resistance problem, the disturbance potential ϕ may be represented as

ϕ(P) =

ˆ
S

µ(Q)G(P,Q)dS(Q) +
1

k

ˆ
`

µ(Q)G∗(P,Q)nx(Q)τy(Q)d`(Q), P ∈ D+, (10)

where µ is the density of the single-layer distribution on the wetted body boundary S and ` is

the waterline of S, which exists only in the case of a surface piercing body. In the above equation

G(P,Q) denotes the associated Green’s function of the Neumann-Kelvin problem defined as:

4πG(P,Q) = r−1 − (r′)−1 +G∗(P,Q), Q ∈ S, P ∈ D+ ∪ S, (11)

where r = ‖P − Q‖, r′ = ‖P − Q′‖ with Q′ denoting the image of Q with respect to the

undisturbed free surface z = 0 and G∗(P,Q) stands for the regular part of the Neumann-Kelvin

Green’s function, consisting of exponential decaying and wavelike components; for more details

see Baar and Price (1988) [2]. Furthermore, τ = (τx, τy, τz) denotes the tangent vector along the

waterline `, directed as shown in Figure 1.

The use of (11) enables automatic satisfaction of the linearized condition on the undisturbed

free surface (Figure 1) and the conditions at infinity. Using all the above, the Neumann-Kelvin

problem is equivalently reformulated as a BIE on the body boundary S, characterized by a weakly

6
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singular kernel,

µ(P)

2
−
ˆ
S

µ(Q)
∂G(P,Q)

∂n(P)
dS(Q)− 1

k

ˆ
`

µ(Q)
∂G∗(P,Q)

∂n(P)
nx(Q)τy(Q)d`(Q) = U · n(P),

P,Q ∈ S. (12)

From the solution of the above integral equation, various quantities, such as velocity, pressure

distribution and ship wave pattern can be obtained. Specifically, total flow velocity and pressure

are readily obtained by

w = U +∇ϕ, (13)

p = p∞ +
ρ

2
(U2 − ‖w‖2)− ρgz, (14)

where ρ is the fluid density and p∞ is the ambient pressure. The deviation of pressure p from p∞

is measured via the non-dimensional pressure coefficient

Cp =
p− p∞
ρ
2U

2
= 1− ‖w‖

2 + 2gz

U2
. (15)

Finally, the free-surface elevation is obtained by

η(x, y) = (U/g) · ϕx(x, y; z = 0). (16)

We conclude this section by noting that in the case of a fully submerged body the above

formulation should be modified by dropping the waterline integral in Eqs. (10) and (12).

3. T-splines: A brief introduction

In this section, we present a brief overview of T-spline technology. For additional details the

interested reader is referred to Sederberg et al. (2003a,b) [23, 27], Sederberg et al. (2004) [28],

Bazilevs et al. (2010) [24], Scott et al. (2011) [29] and Scott et al. (2012) [30]. In what follows

we focus on cubic T-spline surfaces due to their predominance in industry. We denote the spatial

and parametric dimensions by ds and dp, respectively. We denote an element index by e and the

number of non-zero basis functions over an element e by n.

3.1. The unstructured T-mesh

An important object of interest underlying T-spline technology is the T-mesh. For surfaces,

a T-mesh is a polygonal mesh and we will refer to the constituent polygons as elements or,

equivalently, faces. Each element is a quadrilateral whose edges are permitted to contain T-

junctions – vertices that are analogous to hanging nodes in finite elements. A control point,

PA ∈ Rds , ds = 2, 3 and a control weight, wA ∈ R, where the index A denotes a global control

point number, is assigned to every vertex in the T-mesh. The valence of a vertex is the number of

7
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Figure 2: An unstructured T-mesh. Extraordinary points are denoted by hollow circles and T-
junctions are denoted by hollow squares.

edges that touch the vertex. An extraordinary point is an interior vertex that is not a T-junction

and whose valence does not equal four.

Figure 2 shows an unstructured T-mesh. Notice the valence three and valence five at extraor-

dinary points denoted by hollow circles. The single T-junction is denoted by a hollow square.

To define a basis, a valid knot interval configuration must be assigned to the T-mesh. A knot

interval is a non-negative real number assigned to an edge. A valid knot interval configuration

requires that the knot intervals on opposite sides of every element sum to the same value. In

this paper, we require that the knot intervals for spoke edges of an individual extraordinary point

either be all non-zero or all zero.

3.2. Bézier extraction

In this paper, we develop T-splines from the finite element point-of-view, utilizing Bézier

extraction [31, 29]. The idea is to extract the linear operator which maps the Bernstein polynomial

basis on Bézier elements to the global T-spline basis. The linear transformation is defined by a

matrix referred to as the extraction operator and denoted by Ce. The transpose of the extraction

operator maps the control points of the global T-spline to the control points of the Bernstein

polynomials. Figure 3 illustrates the idea for a B-spline curve. This provides a finite element

representation of T-splines, and facilitates the incorporation of T-splines into existing finite element

programs. Only the shape function subroutine needs to be modified. All other aspects of the

finite element program remain the same. Additionally, Bézier extraction is automatic and can be

applied to any T-spline regardless of topological complexity or polynomial degree. In particular,

it represents an elegant treatment of T-junctions, referred to as hanging nodes in finite element

analysis.

8
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Q = CTP

N = CB

Figure 3: Schematic representation of Bézier extraction for a B-spline curve. B-spline basis func-
tions and control points are denoted by N and P, respectively. Bernstein polynomials and control
points are denoted by B and Q, respectively. The curve T (ξ) = PTN(ξ) = QTB(ξ).

3.3. The T-spline basis

A T-spline basis function, NA, is defined for every vertex, A, in the T-mesh. Each NA is a

bivariate piecewise polynomial function. If A is not adjacent to an extraordinary point, NA is

comprised of a 4× 4 grid of polynomials. Otherwise, the polynomials comprising NA do not form

a 4×4 grid but rather an unstructured grid of polynomials. In either case, the polynomials can be

represented in Bézier form. Because of this, Bézier extraction can be applied to an entire T-spline

to generate a finite set of Bézier elements such that

Ne(ξ̃) = CeB(ξ̃), (17)

where ξ̃ ∈ Ω̃ is a coordinate in a standard Bézier parent element domain, Ne(ξ̃) = {Ne
a(ξ̃)}na=1 is

a vector of T-spline basis functions which are non-zero over Bézier element e, B(ξ̃) = {Bi(ξ̃)}mi=1

is a vector of tensor product Bernstein polynomial basis functions defining Bézier element e and

Ce ∈ Rn×m is the element extraction operator.

3.4. The T-spline discretization

We can define the element geometric map, Xe : Ω̃→ Ωe, from the parent element domain onto

the physical domain in the reference configuration as

Xe(ξ̃) =
1

(we)
T
Ne(ξ̃)

(Pe)
T
WeNe(ξ̃) (18)

= (Pe)
T
Re(ξ̃) (19)

9
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where Re(ξ̃) = {Rea(ξ̃)}na=1 is a vector of rational T-spline basis functions, the element weight

vector we = {wea}na=1, the diagonal weight matrix We = diag(we), and Pe is a matrix of dimension

n× ds that contains element control points,

Pe =


P e,11 P e,21 . . . P e,ds1

P e,12 P e,22 . . . P e,ds2

...
...

...

P e,1n P e,2n . . . P e,dsn

 . (20)

Using (18) and (19) we have that

Re(ξ̃) =
1

(we)
T
Ne(ξ̃)

WeNe(ξ̃), (21)

and using (17)

Re(ξ̃) =
1

(we)
T
CeB(ξ̃)

WeCeB(ξ̃). (22)

Note that all quantities in (22) are written in terms of the Bernstein basis defined over the parent

element domain, Ω̃.

4. T-spline based Isogeometric BEM

The Isogeometric Analysis philosophy attempts to define the approximate field quantities (de-

pendent variables) of the boundary-value problem in question from the basis that is being used for

representing the geometry of the body boundary. In the case of the boundary integral equation

(12), the dependent variable is the source-sink density µ, distributed over the body boundary S.

The latter is accurately and efficiently represented as a T-spline surface, as below:

S =

ne⋃
1

Se, Se(ξ̃) =

ncp∑
i=1

diR
e
i (ξ̃), ξ̃ ∈ Ω̃e, (23)

where ncp is the number of control points, or T-mesh vertices, di in the T-mesh, Rei is the restriction

of the rational T-spline basis function Ri at Ω̃e, and ne is the number of elements. In conformity

with the IGA concept, the unknown source-sink surface distribution µ is approximated by the

very same T-splines basis used for the body-boundary representation (23), that is:

µ(P) =

ncp∑
i=1

µiR̃i(P), P ∈ S, (24)

where R̃i(P) ≡ Rei (ξ̃(P)),P ∈ Se. Inserting Eq. (24) into the BIE (12) we get:

1

2

ncp∑
i=1

µiR̃i(P)−
ncp∑
i=1

µin(P) · ui(P) = U · n(P), P ∈ S, (25)
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where

ui(P) =
´
S
R̃i(Q)∇PG(P,Q)dS(Q)+

+k−1
´
`
R̃i(Q)∇PG∗(P,Q)nx(Q)τy(Q)d`(Q)

(26)

are the so-called induced velocity factors.

We now collocate Eq. (25) by specifying ncp collocation points Pj , j = 1, . . . , ncp, on S. For

smooth ship hulls, these points correspond to the 1-ring collocation points defined for both the

non-extraordinary and extraordinary vertices of the T-mesh. In this way, we obtain the following

linear system of equations with respect to the unknown coefficients µi:

ncp∑
i=1

µi

[
R̃i(Pj)− 2n(Pj) · ui(Pj)

]
= 2U · n(Pj), j = 1, . . . , ncp. (27)

In the above equation, the integrals involved in the calculation of the induced velocity factors

(Eq.26) are localized to element integrals over Bézier elements using the Bézier extraction frame-

work described in §3.2. Moreover, we need to make sure that collocation point Pj lies inside of

such an element (and not on an edge) in order for the Cauchy Principal Value (CPV) integrals

in Eq. 26) to exist. If this is not the case we appropriately shift automatically the corresponding

collocation point so that the evaluation of the CPV integrals can be carried out.

5. Numerical Results and Discussion

In order to test the efficiency and accuracy of the T-spline BEM methodology developed in the

previous sections, we shall now present and discuss its performance in tests involving an ellipsoid

(§5.1) and a ship hull (§5.2). Efficiency will be investigated by comparing locally-refined T-splines

with non-locally refined NURBS. The error will be compared with either analytically available

solutions or reference solutions provided by the NURBS solver after a dense global refinement.

5.1. A prolate spheroid in an infinite domain

In this example, we consider a prolate spheroid with axes a, b=c, and ratio a : b = 5 : 1,

moving at constant speed U = (−U, 0, 0) in an infinite homogeneous fluid. In this case, an

analytical expression of the velocity w on the surface of the ellipsoid is available, namely:

w(P) =
2

2− a0
(
U− Unx(P)n(P)

)
, (28)

a0 =
1− ε2
ε3

(
−2ε+ ln

(
1 + ε

1− ε

))
, ε =

√
1− (b/a)2; (29)

(see e.g. [32, 33]). In our study the L2-error associated with the velocity field on the body surface

is defined as follows:
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‖w −wr‖L2 =

(ˆ
S

‖w(P)−wr(P)‖2dS(P)

) 1
2

(30)

where wr denotes the IGA-BEM approximation of w corresponding to the refinement level r.

Figure 4 depicts the T-mesh of the spheroid along with the corresponding pointwise error ‖w(P)−
wr(P)‖ of the velocity for five refinement steps. Each refinement level r is obtained by locally

refining the T-mesh at level r−1 in areas where the error is high. This refinement process manages

to reduce the L∞-error from 10−1 to 10−3. The corresponding NURBS based process, where each

T-mesh is replaced by its unique NURBS refinement, is given in Figure 5.

Figure 6 illustrates that, for a given level of L2-error, the T-spline based local refinement

process requires considerably fewer degrees of freedom compared to the corresponding NURBS-

based global refinement process (e.g., for an error of 5.5 × 10−4 the required degrees of freedom

are approximately 600 for the T-spline vs. 1600 for the corresponding NURBS representation, i.e.,

a reduction of 62.5%).
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Figure 4: T-spline refinement steps (left column) along with the corresponding velocity error
distribution (right column).
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Figure 5: NURBS refinement steps (left column) along with the corresponding velocity error
distribution (right column).
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Figure 6: L2 velocity error versus degrees of freedom corresponding to the refinement processes
depicted in Figures 4 and 5. The T-spline meshes are locally refined based on comparison with the
analytic solution. The NURBS results (blue curve) correspond to the unique NURBS refinement
of each of the T-spline meshes.

5.2. Experimenting with a ship hull

In this example we consider a surface piercing ship moving with constant speed U = (U, 0, 0).

The T-spline surface model of the ship hull has been constructed within the Rhinoceros modeling

system1 and more specifically by using its T-spline plugin2. The resulting T-spline surface, see

Figure 7(a), is locally of polynomial degree three in both directions and has 79 control points.

Since all interior control points are either T-junctions or have a valence of four, no extraordinary

control points exist in the T-mesh thus allowing a unique conversion of the T-spline representation

into a single NURBS patch which comprises 132 control points; see Figure 7(b).

In order to drive a local refinement process and check the corresponding convergence rate of

the solution, we have constructed a “reference solution” of the problem by inserting uniformly

nine knots in every knot interval of the original NURBS representation and computing the IGA-

BEM approximation of µ for the resulting NURBS surface. The obtained mesh along with the

corresponding reference solution are depicted in Figure 8.

The L2-error associated with the distribution of the solution field µ on the body surface is

defined as follows:

‖µref − µr‖L2 =

(ˆ
S

|µref (P)− µr(P)|2dS(P)

) 1
2

(31)

1http://www.rhino3d.com
2http://www.tsplines.com
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where µref denotes the reference solution while µr denotes the IGA-BEM approximation of µ

corresponding to the refinement level r. The L2-error associated with the distribution of the

pressure coefficient Cp is analogously defined. Figure 9 depicts the T-mesh of the ship hull along

with the corresponding pointwise error |µref (P) − µr(P)| of µ for the original mesh and three

refinement steps. Each refinement level r is obtained by locally refining the T-mesh at level r− 1

in areas where the error is high. In the first two steps the refinement is confined in the bow and

stern areas while the third one involves the middle part as well. The corresponding NURBS based

process, where each T-mesh is replaced by its unique NURBS refinement, is given in Figure 10.

In Figure 11a the L2-error for µ versus the degrees of freedom is presented for the T-spline

based local refinement process (blue curve), the corresponding NURBS refinement (red curve)

and the refinement process resulting from inserting uniformly r knots in each parametric interval

of the original NURBS representation (green curve). As it can be seen from this figure, for a

given error level, the T-spline based refinement requires considerably fewer degrees of freedom

as compared to the other two refinement processes. The worst performance occurs, as expected,

when using uniform refinement. Analogous remarks can be also made for the L2-error for Cp,

which is presented in Figure 11(b).

(a) (b)

Figure 7: T-spline (a) and NURBS (b) surface model of the ship hull.

(a)

 

 

-2 -1 0 1 2

-0.15

-0.1

-0.05

(b)

Figure 8: Uniformly refined NURBS mesh(a) and corresponding reference solution (b).
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Figure 9: T-spline refinement steps (left column) along with the corresponding error distribution
of the solution µ (right column).
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Figure 10: NURBS refinement steps (left column) along with the corresponding error distribution
of the solution µ (right column).
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Figure 11: L2-error of the density µ (a) and pressure coefficient Cp (b) versus the degrees of
freedom corresponding to the refinement processes depicted in Figs. 9 and 10. The T-spline
meshes are locally refined based on comparison with the reference solution. The NURBS results
(blue curve) correspond to the unique NURBS refinement of each of the T-spline meshes. The
NURBS uniform refinement (red curve in (a)) extends the coarsest T-spline to its unique NURBS
refinement and then uniformly refines it.

6. Conclusions

In this work, we have demonstrated the advantages of T-splines technology in the context of the

ship wave resistance calculation. The higher smoothness of the bases for a single T-spline surface

along with the ability for local refinement allowed us to achieve enhanced convergence rates with

considerably fewer degrees of freedom when compared to our prior NURBS approach. For the

prolate spheroid example, the T-spline based local refinement process requires considerably fewer

degrees of freedom compared to the corresponding NURBS-based global refinement process (e.g.,

for an error of 5.5× 10−4 the required degrees of freedom are approximately 600 for T-spline vs.

1600 for the corresponding NURBS representation, i.e., a reduction of 62.5%; see Figure 6). The

exact same picture is drawn from our second example, i.e., the ship hull.
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This significant enhancement permits our T-spline based IGA-BEM solver to be embedded

with significantly lower cost in any optimization process for designing ship hulls with minimum

wave resistance; see, e.g. [34]. Future work will focus on this direction as well as on the extension

of the methodology to treat effects of nonlinearities in the wave resistance problem.
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