Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Analysis of significant factors on cable failure using the Cox proportional hazard model

Tang, Zeyang and Zhou, Chengke and Jiang, Wei and Zhou, Wenjun and Jing, Xiaoping and Yu, Jianhui and Alkali, Babakalli and Sheng, Bojie (2014) Analysis of significant factors on cable failure using the Cox proportional hazard model. IEEE Transactions on Power Delivery, 29 (2). 951–957. ISSN 0885-8977

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper proposes the use of the Cox proportional hazard model (Cox PHM), a statistical model, for the analysis of early-failure data associated with power cables. The Cox PHM analyses simultaneously a set of covariates and identifies those which have significant effects on the cable failures. In order to demonstrate the appropriateness of the model, relevant historical failure data related to medium voltage (MV, rated at 10 kV) distribution cables and High Voltage (HV, 110 kV and 220 kV) transmission cables have been collected from a regional electricity company in China. Results prove that the model is more robust than the Weibull distribution, in that failure data does not have to be homogeneous. Results also demonstrate that the method can single out a case of poor manufacturing quality with a particular cable joint provider by using a statistical hypothesis test. The proposed approach can potentially help to resolve any legal dispute that may arise between a manufacturer and a network operator, in addition to providing guidance for improving future practice in cable procurement, design, installations and maintenance.