Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Pre-charging and DC fault ride-through of hybrid MMC based HVDC systems

Zeng, Rong and Xu, Lie and Yao, Liangzhong and Morrow, D John (2015) Pre-charging and DC fault ride-through of hybrid MMC based HVDC systems. IEEE Transactions on Power Delivery. ISSN 0885-8977

[img] PDF (Zeng-etal-IEEETOPD-2015-Pre-charging-and-DC-Fault-Ride-Through)
Zeng_etal_IEEETOPD_2015_Pre_charging_and_DC_Fault_Ride_Through.pdf - Accepted Author Manuscript

Download (974kB)


Compared to half-bridge based MMCs, full-bridge based systems have the advantage of blocking dc fault, but at the expense of increased power semiconductors and power losses. In view of the relationships among ac/dc voltages and currents in full-bridge based MMC with the negative voltage state, this paper provides a detailed analysis on the link between capacitor voltage variation and the maximum modulation index. A hybrid MMC, consisting of mixed half-bridge and full-bridge circuits to combine their respective advantages is investigated in terms of its pre-charging process and transient dc fault ride-through capability. Simulation and experiment results demonstrate the feasibility and validity of the proposed strategy for a full-bridge based MMC and the hybrid MMC.