Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Linear wave dispersion laws in unmagnetized relativistic plasma : analytical and numerical results

Bergman, Jan and Eliasson, Bengt (2001) Linear wave dispersion laws in unmagnetized relativistic plasma : analytical and numerical results. Physics of Plasmas, 8 (5). ISSN 1070-664X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper dispersion laws for electrostatic and electromagnetic waves in a homogeneous and unmagnetized relativistic Vlasov plasma are derived. From the dispersion laws the relativistic plasma frequency, which is temperature dependent is derived. Using the standard technique of successive approximations, simple but powerful approximate relativistic dispersion laws are derived, resembling the electromagnetic dispersion law and the electrostatic Bohm–Gross dispersion law in the nonrelativistic case. The relation between the relativistic plasma frequency omega_pe, Debye wave number k_D and the thermal velocity v_th,e is established. The approximate dispersion laws are compared with numerical solutions of the full dispersion laws. The full dispersion equations are transformed so that they are well suited for numerical evaluation in the temperature range where a fully relativistic treatment is needed.