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Spontaneous emission and thermalization of cold bosons in optical lattices
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We study the thermalization of excitations generated by spontaneous emission events for cold bosons in
an optical lattice. Computing the dynamics described by the many-body master equation, we characterize
equilibration time scales in different parameter regimes. For simple observables, we find regimes in which the
system relaxes rapidly to values in agreement with a thermal distribution, and others where thermalization does
not occur on typical experimental time scales. Because spontaneous emissions lead effectively to a local quantum
quench, this behavior is strongly dependent on the low-energy spectrum of the Hamiltonian, and undergoes a
qualitative change at the Mott insulator–superfluid transition point. These results have important implications
for the understanding of thermalization after localized quenches in isolated quantum gases, as well as the
characterization of heating in experiments.
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Spontaneous emission is a fundamental source of heating
in optical dipole potentials [1,2], and one of the key heating
sources in current experiments with cold atoms in optical
lattices [3,4]. This heating induces nonequilibrium dynamics
in which thermalization processes are expected to play a key
role. Typically it is assumed that the energy added to the
system will be thermalized, causing an effective increase in
temperature. But does that happen?

This question is a special case of a fundamental problem
in many-body quantum mechanics: To what extent, and
under which conditions, will an isolated system undergo
thermalization when perturbed away from equilibrium, in
the sense that at long times the system reaches a steady
state where simple observables take the same values as those
of a thermal distribution [5–8]. Recently, experiments with
strongly interacting cold gases confined to move in one
dimension (1D) [9] have demonstrated regimes of integrable
dynamics—where systems do not thermalize in a traditional
sense [10], although they can sometimes relax to a steady-
state distribution described by a generalized Gibbs ensemble
[11,12].

In this Rapid Communication we investigate these issues
by studying dynamics induced by spontaneous emissions
(incoherent light scattering) for cold bosons in an optical
lattice [13], and identify contrasting parameter regimes where
(i) certain observables relax over short times to thermal values,
or (ii) the system relaxes on a short time scale to states that
are clearly nonthermal. The dynamics depends greatly on the
low-energy spectrum of the Hamiltonian because spontaneous
emissions give rise to a local quench, leading to qualitative
changes at the superfluid–Mott insulator phase transition.
By combining time-dependent density matrix renormalization
group (t-DMRG) methods [14–17] with quantum trajectory
techniques [18–20], we compute the dynamics in the context
of real experiments. These results have important implications
for the characterization of heating in current experiments [21].
In fact, the lack of thermalization of certain excitations may
be exploited to enhance the realization of fragile many-body
states [22–25], leading to greater robustness of quantum

simulators [26,27]. Below we first summarize the effects of
spontaneous emissions on atoms in an optical lattice, before
analyzing thermalization in the lowest Bloch band.

Effect of spontaneous emissions. The scattering of a photon
via spontaneous emission effectively provides the environment
with information about the position of an atom [1,2]. This leads
to two key physical effects on bosons beginning in the lowest
band of an optical lattice [3,4]: It can (i) transfer atoms to
higher bands, and/or (ii) localize atoms on the length scale of
the photon wavelength λ.

Transfer of atoms to higher bands is suppressed for the
relatively deep optical lattices found in experiments by the
square of the Lamb-Dicke parameter, η = 2πaT /λ, where aT

is the trap length for the lowest band Wannier function. For
typical experiments with lattice depths around V0 = 8ER [with
ER = 4π2

�
2/(2mλ2), where m is the mass of the atom], η2 ∼

0.1, and if the lattice is red-detuned, the dominant dissipative
processes return atoms to the lowest band. These rare band
transfer processes give rise to a large energy increase of the
order of the band-gap energy ωg (� ≡ 1). This energy is much
larger than energy scales in the lowest band, which prevents
thermalization of ωg on experimental time scales because it
would require a collision with many atoms simultaneously to
transfer the energy to the lowest band.1 This is analogous to
the collisional stability of doublon pairs demonstrated in recent
experiments [28].

Heating and thermalization in the lowest band. For pro-
cesses where the atom remains in the lowest band, this
question is substantially more complicated. A spontaneous
emission localizes the atoms on the scale of a single site
[4], because the wavelength is comparable to the lattice
spacing λ/2 ∼ a. This is in contrast with photon scattering

1Note that collisional processes between two or more atoms in the
first excited band can return particles to the lowest band while exciting
atoms to higher bands. This does not affect the conclusion that the
band-gap energy cannot be thermalized with the atoms in the lowest
band.
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in solid state physics, where λ is much larger than the lattice
spacing. These processes increase the energy on scales of the
width of the lowest band, as atoms are transferred to higher
quasimomentum states.

Thermalization properties then depend on dynamics de-
scribed by the Bose-Hubbard model,

H = −J
∑

〈i,j〉
b
†
i b j + U

2

∑

i

b
†
i b

†
i bibi +

∑

i

εib
†
i bi . (1)

Here, b
†
i is a bosonic creation operator for an atom on site

i , J denotes the tunneling rate between neighboring sites,
U is the on-site interaction, and εi is the on-site potential.
This model is nonintegrable outside the limiting cases of
U → 0 and U/J → ∞, and has been shown to exhibit chaotic
spectral properties when U ∼ J [29,30]. As a result, it might
be expected that the system will thermalize for most values
of U/J , with the most rapid thermalization around U ∼ J .
For high values of U/J , the system behaves as hard-core
bosons, relaxing to a generalized Gibbs ensemble [10,31].
This is what is typically expected for a global quench of the
value of U/J [32]. However, it is not clear that this analysis
applies to our situation because a spontaneous emission event
leads to localization of atoms in a local quantum quench with
excitations that are very low in energy. Because the lowest part
of the energy spectrum can exhibit spectral statistics closer to
an integrable model [29], this may even result in a lack of
thermalization for all values of U/J . Below we find that the
relaxation time scales and equilibrium values strongly depend
on the interactions in the lower band (as it is also observed for
local quenches in 2D [33–35]).

In the lowest band, the heating and thermalization together
can be effectively described by a master equation [4] (see
Supplemental Material [36]),

ρ̇ = −i [H,ρ] − γ

2

∑

i

[n̂i ,[n̂i ,ρ]], (2)

where H is the Bose-Hubbard Hamiltonian (1). The dissipative
dynamics involve localization of particles on a single site via
scattering of photons at a rate γ , which depends on the intensity
of the lattice lasers and the detuning from resonance.

Thermalization after a single intraband spontaneous emis-
sion event. In order to characterize the thermalization process,
we first consider the situation where the system is in the
ground state of model (1) |ψg〉 at time t = 0, and undergoes
a spontaneous emission (on site i). In the sense of continuous
measurement theory [19] applied to (2), the resulting state
prepared is

|ψi(t = 0+)〉 = n̂i|ψg〉
||n̂i|ψg〉|| . (3)

We consider a weighted ensemble average over the sites i
with probabilities of spontaneous emission pi ∝ 〈ψg|n2

i |ψg〉,
and treat a 1D system, where we can use t-DMRG methods
to propagate the state exactly in time. Note that all t-
DMRG results are converged in the matrix product state bond
dimension D and the truncation of the local dimension dl .

Figure 1(b) shows the typical dynamics after a spontaneous
emission spreads a particle over the whole Brillouin zone and
increases the kinetic energy Ekin. The interactions between
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FIG. 1. (Color online) (a) Absorption and spontaneous emission
of a lattice photon leads effectively to localization of single atoms.
Tunneling and interactions between atoms then redistribute the
energy added to the system. (b) Localization of an atom in space
corresponds initially to a distribution of the atom over the whole
Brillouin zone (the tails of the quasimomentum distribution are lifted).
Subsequent unitary evolution leads to a broadened quasimomentum
distribution, i.e., the nq=0 peak and the tails decrease, while the small
quasimomentum components increase (t-DMRG, U = 2J , N = 48
particles on M = 48 sites, dl = 6, D = 512).

particles transfer some of this increased kinetic energy to
interaction energy, as shown explicitly in Fig. 2(a) for an
initial superfluid (SF) state with U = 2J . At t = 0+, Ekin is
increased by an amount of the order of J over the ground-state
value, and it then relaxes to a lower value over a time scale
∼5/J in unitary time evolution. We obtain an equilibrium
value Ekin

eq from path integral Monte Carlo (QMC) calculations
with worm-type updates [37] (here in the implementation of
Ref. [38]—see Ref. [39] for a recent review of the method with
applications to cold gases) at finite temperature T , fitting T

to match the value of energy 〈E〉 for t � 0+. It is remarkable
that this value corresponds to the equilibrium value reached
dynamically within statistical errors, indicating thermalization
of this quantity. In contrast, for an initial Mott insulator (MI,
U = 4J ) state, Ekin relaxes on a slightly longer time scale
to an equilibrium value that clearly does not correspond to a
thermal distribution at the appropriate value of 〈E〉. In fact,
in this parameter regime, thermally induced coherence in the
MI leads to a Ekin

eq being close or even below the value of the
ground-state kinetic energy [40].

In Fig. 2(c) we compare the extrapolated equilibrium kinetic
energy Ekin

∞ (obtained from an exponential fit) to Ekin
eq for

various system sizes and interaction strengths. The lack of
thermalization for values of U/J immediately above the
SF-MI transition point (when the gap is about 
 = J/8) is
striking. Although from our calculations we cannot rule out a
second relaxation process to a thermal distribution for much
larger systems or on much longer time scales, it is clear that
a qualitative change in behavior occurs here, leading to a
lack of thermalization on typical experimental time scales.
Before performing these calculations, we might have expected
a crossover behavior, similar to that seen in the relaxation
rates, as shown in Fig. 2(d) from exponential fits to the
long-time behavior of Ekin, where the fastest relaxation occurs
for U/J ∼ 1.

Note that as with thermalization in any closed quantum
system, the behavior depends on the observable considered,
and sufficiently complicated or nonlocal observables will
never thermalize [5]. In Figs. 2(e) and 2(f), we show the
quasimomentum distribution nq in our system with open
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FIG. 2. (Color online) Time evolution after a single spontaneous
emission. (a), (b) For a superfluid initial state (U = 2J ), the kinetic
energy relaxes to the equilibrium value obtained from a Monte Carlo
calculation Ekin

eq . For MI states (U = 4J ), the energy relaxes, but not to
Ekin

eq . The zero value of kinetic energy for this plot is the ground-state
kinetic energy Ekin

gs . (c) The difference in the infinite time value of the
kinetic energy (obtained from an extrapolation of an exponential fit) to
the equilibrium energy. For MI states with U/J � 3.37, the difference
increases rapidly for M = 24,48,96 sites. (d) The decay rate extracted
from the exponential fit as a function of U . (e) Comparison of the
time-evolved quasimomentum distribution at t = 10/J (dots) to the
equilibrium distribution from a QMC calculation. (f), (g) Differences
between the two distributions as a function of time for the qa = 0 peak
and for a large quasimomentum of qa = (40/48)π . In the superfluid
[U = 2J in (f)], the components for large momenta relax rapidly to
thermal values, for qa ∼ 0, the relaxation time scale is much longer. In
the MI [U = 5J in (g)], the same is true, but for large momenta there is
a discrepancy to the thermal value. (t-DMRG, dl = 6, D = 256,512;
error bars represent fitting errors and statistical errors from QMC.)

boundary conditions for different points in time. For all q

except very near q = 0, nq relaxes to a thermal distribution
on time scales tJ ∼ 5 in the SF for U � 1. However, long-
wavelength modes around nq=0 require much longer relaxation
time scales, and are still far from their steady-state values on the
time scales computed here (though they are evolving towards
the expected thermal value). In the MI, the distribution behaves
qualitatively differently, in that all values of q show small
discrepancies from the equivalent thermal values, consistent
with what we observed for the kinetic energy. While these
discrepancies are small for a single spontaneous emission
event, they can be much larger when multiple photons are
scattered in the experimental protocol discussed below.

Explanation based on the low-energy spectrum. The key
to understanding the qualitative change in behavior at the
transition point lies in the fact that the spontaneous emissions
give rise to a local quantum quench, which only significantly
populates low-energy eigenstates. Most of the amplitude of the
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FIG. 3. (Color online) Expectation values of the kinetic energy
of the lowest 1000 eigenstates as a function of the energy in a system
with M = 10 and N = 10 (exact diagonalization). The gray line in the
upper plot shows the equilibrium kinetic energy Ekin

eq for increasing
temperatures as a function of the mean energy of the underlying
Boltzmann distributions. In the SF, the eigenvalue expectations are
distributed around Ekin

eq , but are far from these values in the MI. The
lower parts show the occupation probabilities for eigenstates after a
single spontaneous emission.

resulting wave function is in the ground state (Fig. 3), where
we plot occupation probabilities |cα|2 and expectation values
of the kinetic energy 〈Eα|Êkin|Eα〉 in the lowest 1000 energy
eigenstates |Eα〉. We find that Ekin grows essentially linearly as
a function of Eα , even for U/J ∼ 3 near the phase transition,
and that these values coincide with Ekin

eq from Boltzmann
distributions with corresponding mean energies Eα . Therefore,
a state with |cα|2 leading to an energy expectation 〈E〉
will approximately have the same kinetic energy as Ekin

eq
with mean energy 〈E〉. Thus, also the long time average
〈Ekin〉 → ∑

α |cα|2〈Eα|Êkin|Eα〉 [5] will correspond to Ekin
eq

for the corresponding 〈E〉. As soon as we enter the MI phase,
between U/J ≈ 3 and 3.8, there is a qualitative change in the
distribution of 〈Eα|Êkin|Eα〉, as depicted in Fig. 3, after which
we cannot expect to obtain thermal values. In the deep MI,
〈Eα|Êkin|Eα〉 are far from Ekin

eq , and correspond to excitations
of doublon-holon pairs. In this limit, the system will relax over
time to a generalized Gibbs ensemble.

Proposed experimental measurement. We now consider a
specific experimental setup in which these effects could be
observed. It is important to consider multiple spontaneous
emission events, both because of the difficulty of restricting
to a single event, and in order to make the change in
the momentum distribution sufficiently large to measure.
As depicted in Fig. 4(a), we consider a situation in which
the background scattering rate is low, and then a moderate
scattering rate is induced for a short time t = 1/J (e.g., via
a weak beam with near-resonant light). We then switch this
off, and observe how the system thermalizes over a time
scale of t ∼ 5/J . We compute the dynamics of this process
by combining t-DMRG methods with quantum trajectory
techniques [41], which after a stochastic average allow us to
determine the many-body dynamics from the master equation
(see Supplemental Material [36]).

In Fig. 4(a), we plot Ekin and Ekin
eq as a function of

time. As expected from our single-event calculations, the
Ekin increases much faster than would be expected from a
thermal distribution with the same increase in total energy
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FIG. 4. (Color online) Quantum trajectory simulations for heat-
ing with spontaneous emission rate γ , which is switched on for a time
t = 1/J , as illustrated above (a). M = N = 48, and the standard
error of the mean is given as the shaded area. (a) The increase in
kinetic energy during the heating and the subsequent relaxation for
γ = 0.02,0.04,0.06. For superfluid initial states, the kinetic energy
relaxes to the equilibrium value (QMC calculations, dashed lines).
For a Mott insulating initial state, on the same time scale, the energy
does not thermalize. This can be seen in (b), where we plot the
difference between the actual kinetic energy and the equilibrium
energy (t-DMRG results, D = 256, dl = 6, 500 trajectories).

(dashed line), and this is more pronounced for larger γ .
Note that in the experiment of Ref. [24], γ ≈ 0.02J . In
Fig. 4(b) we plot Ekin − Ekin

eq for different values of U/J .
We see clearly that as in the case of a single spontaneous
emission, the kinetic energy will relax towards the expected
equilibrium values in the superfluid regime. Strikingly, this is
not the case in the Mott insulator, where the system remains
well away from the equilibrium value on the time scales
calculated. Note that while here the energy increase is small,
as we use parameters where few spontaneous emission events
occur to allow quantitative numerical treatments, experiments
could work with faster scattering rates or longer excitation
time scales. Our predictions are observable via momentum
distribution measurements that study relaxation in different
parameter regimes. This would be enhanced by a quantitative

comparison between experimental measurements and QMC
calculations (similar to Ref. [24]).

Conclusions. We showed that for bosons in an optical
lattice, a change in the thermalization behavior after sponta-
neous emissions occurs at the SF-MI transition point. Simple
quantities including the kinetic energy and quasimomentum
distribution settle rapidly to a steady state. However, while in
some cases these values correspond to a thermal distribution, in
others the values are demonstrably nonthermal. These findings,
presented here for a uniform system, remain valid in the
presence of a harmonic trap, as is shown by results presented
in the Supplemental Material [36]. The lack of complete
thermalization implies that the specific effects on specific
many-body states must be considered. The generalization of
these results to higher dimensions remains an open question,
however, because this is a low-energy quench, we expect also
that the thermalization properties will be strongly dependent
on the detailed low-energy spectrum.

In some regimes, this may lead to greater robustness of
states produced in optical lattices, especially where the energy
added in a spontaneous emission event would correspond to
temperatures above those required for realization of fragile
types of order [22–25]. Because the dynamics must instead be
treated as a nonequilibrium situation on a case-by-case basis,
much of the interesting order can survive on significant time
scales.
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