
1 
 
 

 

Abstract 

1. The current study demonstrated that there is still new information to be obtained on the chemical and 

biological transformation of the widely studied flavonoid quercetin. 

2. In rat hepatocytes thirty five metabolites of quercetin were observed by using high resolution mass 

spectrometry. The metabolites included glucuronides, sulphates, mixed sulphate/glucuronide metabolites 

and methylated versions of these metabolites. 

3.  Several metabolites were formed from chemical degradation products of quercetin which were found to 

form in Krebs-Henseleit (KH) buffer, degradants of quercetin were also formed in the buffer under the 

conditions used for hepatocyte incubations.  

4. The degradants and  metabolites of quercetin were characterised by using high resolution MS2. It was 

observed that the glutathione (GSH) conjugates of quercetin formed in large amounts in ammonium 

bicarbonate solution although the pattern of conjugates formed was different from that observed in 

hepatocytes suggesting some degree on enzymatic control on GSH conjugate formation in the hepatocyte 

incubations.   

5. GSH conjugates were not formed when GSH was included in incubations of quercetin in KH buffer alone and 

only small amounts of quercetin degradation occurred. Instead GSH was extensively converted into GSSG 

thus presumably reducing the levels of oxygen in the incubation thus preventing quercetin degradation. 

Keywords Quercetin, hepatocytes, degradation, metabolism, glutathione adducts. 

Introduction 

There is strong evidence to suggest that dietary phenolic compounds can confer health benefits including protection 

against cardiovascular disease, neurodegenative disease and cancer (Del Rio et al, 2013).  Phenolic compounds are 

comprised of a wide range of structural types including flavones, flavonols, isoflavones, flavanones, anthocyanins, 

chalcones and phenolic acids. One the most studied phenolic compounds is the flavonol quercetin. Quercetin is 

abundant in the diet where it occurs both as the aglycone and in conjugated form with, most commonly, glucose or 

the disaccharide rutinose, quercetin aglycone only occurs at low levels in foodstuffs. Quercetin itself can be directly 
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absorbed from the intestine but the more abundant glycosides have to be converted to the algycone via the action 

of a hydrolytic enzyme such as lactase phlorizidin hydrolase which occurs in the brush border membrane cells of the 

small intestine (Del Rio et al, 2013). Thus feeding of fried onions to subjects results in rapid appearance of quercetin 

sulphate and glucuronide metabolites in the blood stream following cleavage of the glucoside conjugates of 

quercetin which are abundant in onions (Mullen et al, 2006). The other abundant conjugate of quercetin in the diet 

is quercetin rutinoside which is not absorbed in the small intestine but passes into the large intestine where it is 

converted into the aglycone via the action of colonic microbiota. When tomato juice, which contains large amounts 

of quercetin 3-O rutinoside was given to humans the appearance of quercetin metabolites in plasma was much 

delayed in comparison with the absorption from onions and the levels absorbed were much lower (Jagananth et al, 

2006). Part of the reason for the lower absorption of quercetin from the large intestine is due to the fact that the 

microbiota produce a range of degradation products from quercetin formed via cleavage of the C ring producing a 

range of phenolic acids (Serra et al, 2012). Mullen et al observed a range of quercetin metabolites in human plasma 

and urine following consumption of onions using LC-MS2.  Two sulfates, three glucuronides, two glucuronide 

sulphates, three diglucuronides, two methylquercetin diglucuronides plus a number of glucoside conjugates were 

observed (Mullen et al, 2004). A recent study identified fifteen metabolites of quercetin in human plasma following 

consumption of apple sauce with added apple peel or onion (Lee et al, 2012) using high resolution LC-MS/MS. The 

metabolites included one sulphate, three glucuronides, one diglucuronide sulphate, four diglucuronides, two methyl 

glucuronides, three methyldiglucuronides and a glutathione adduct. The levels of four major quercetin conjugates 

were determined in human plasma after three months of supplementation with quercetin (Cialdella-Kam et al, 

2012). The most abundant conjugates detected were isorhamnetin-3-glucuronide, quercetin 3-glucuronide, 

quercetin 3-sulfate and quercetin diglucuronide. In addition this study examined the effects of quercetin 

supplementation on global metabolite profiles of the subjects in the study. The metabolites of a number of 

polyphenols including quercetin were analysed in humans following consumption of cranberry syrup (Iswaldi et al, 

2013). Quercetin aglcyone and methylated and glucuronide metabolites of quercetin were detected. 

                  There have also been numerous in vitro studies of quercetin metabolism. Incubation of quercetin with rat 

and human hepatocytes led to identification of 14 metabolites of quercetin including methylated, glucuronidated 

and sulphated metabolites (van der Woude et al , 2004). In this study the identity of the metabolites and thus 
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positions of methylation, glucuronidation and sulfation were confirmed by using NMR for full structure elucidation.  

Quercetin was incubated with murine hepatocytes (Hong and Mitchell, 2006) and eighteen metabolites of quercetin 

were identified in the incubations including methylated, glucuronidated and sulphated metabolites but in addition a 

range of glutathione adducts were observed. These included the glutathione adducts of methyl quercetin and 

quercetin quinone and glucuronides of glutathione quercetin and methylquercetin. In addition, the observations in 

hepatocytes led to the observation of the presence of several mercapturic acid  conjugates of phenolic acids derived 

from quercetin in human urine following onion consumption. 

         An aspect of quercetin behaviour which has not been clearly integrated with its biological behaviour is the 

relative ease with which it undergoes chemical degradation. It was observed that eighteen degradation products of 

quercetin were formed upon its electrochemical degradation (Zhou et al, 2007). The products included phenolic 

acids formed via ring scission, oxidised forms of quercetin and dimers of quercetin. It was proposed that the 

degradation occurred via a carbocation which led to the scission of ring C. Another study used peroxidase from 

onions to oxidise quercetin and found similar degradation products (Osman and Makris, 2010). In this case it was 

proposed that the ring scission of the C ring took place via formation of a free radical at position 2 in ring C followed 

by addition of oxygen to form an oxygen bridge across ring C. The degradation of quercetin in aqueous solutions at 

75 °C and 85°C in aqueous solution at pH 5.9 and pH 7.4 was studied using continuous infusion into a high resolution 

mass spectrometer (Barnes et al, 2013). Again degradation took place under these relatively mild pH conditions to a 

range of ring scission products and dimers.  

    Thus it would seem that although quercetin has been intensively studied it still remains an active subject of study 

and each new study seems to reveal further aspects of its chemistry and biochemistry. In the current study the 

metabolism of quercetin was carried out in rat hepatocytes using high resolution mass spectrometry to elucidate the 

metabolites formed. A metabolomic approach was taken in order to see if the range of metabolites and degradation 

products could be extended beyond what is currently known. 

Experimental 

Chemicals and Reagents 

Quercetin (99%) and dimethylsulphoxide (DMSO) were purchased from Sigma Aldrich, Dorset UK. HPLC grade 

acetonitrile and Analar formic acid were obtained from Fisher Scientific (Loughborough, UK). Water was obtained 

from a Milli-Q water-purification system (Millipore, Watford UK).   
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Preparation of hepatocytes 

Hepatocytes were isolated from adult male Sprague-Dawley (SD) rat (≈ 200 g of body weight) livers by collagenase 

digestion, a two-step  perfusion process as described by (Moldeus et al. 1978) Subsequently, the hepatocyte 

suspension was washed with 50ml Krebs Henseleit  buffer, pH 7.4, containing 12.5 mM HEPES (Liu et al., 2002).  In 

order to determine cell viability a trypan blue exclusion test was carried out, and hepatocyte preparations used were 

at least 78 % viable. 

Incubation With Hepatocytes and KH Buffer Blank 

A stock solution of quercetin was prepared by dissolving 100 µmoles of quercetin in 1 ml of DMSO. The quercetin 

solution was incubated at 100 µM with  2 x 106  isolated hepatocytes per ml at 37°C under an atmosphere of 95% O2, 

5% CO2  in rotating 50 ml round bottomed flasks. Blank incubations were carried out without cells. A control 

incubation was concomitantly run with hepatocytes but without drug. Four aliquots (0.5 ml) were taken from the 

incubation solutions at 0, 30 and 120 minutes and the reaction terminated by addition of 1ml of acetonitrile. The 

samples were stored at -80°C. Prior to analysis samples were thawed at room temperature, sonicated and 

centrifuged at 5000 rpm for 5 min to remove protein and collect the supernatants for analysis of conjugates. In order 

to test the degradation of quercetin in blank solution under same above conditions (95% O2, 5% CO2) incubation was 

carried out in a rotating 50 ml round bottomed flask in KH buffer alone. In addition 10 µl of quercetin solution (30.2 

mg / 1ml of DMSO) was incubated in 10 ml of KH buffer to which had been added 10 µl of GSH solution (60 mg or 

120 mg / 1ml in 0.2% w/v ammonium bicarbonate). 

Preparation of GSH Conjugate of Quercetin 

A 10 µl of quercetin solution (30.2 mg / 1ml of DMSO) was added to GSH solution (1mg /1ml in 0.2% ammonium 

bicarbonate). The sample was left at room temperature for 24 hours before analysis. For analysis the sample was 

diluted 10:1 with 0.1% formic acid and then analysed by LC-MS. 

LC-MS Analysis 

Preliminary identification of the chemical structure of the quercetin metabolites was performed by using a Dionex 

HPLC instrument connected to an Exactive Orbitrap (Thermo Fisher Scientific, UK). The HPLC was fitted with an ACE 5 

C18-AR column (5 µm, 150mm x 4.6mm, HiChrom, Reading UK). The mobile phases consisted of 0.1% formic acid in 

water (A) and 0.1% formic acid in acetonitrile (B). The gradient system was 10% B, (0 min); 80% B, (30-32 min); 10% 

B, (32-40 min). The flow rate of the mobile phase was 0.3 ml/min. Mass spectra were recorded using electrospray 
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ionization (ESI) in negative and positive modes.  Samples were run in negative mode using a needle voltage of - 4.0 

kV and source temperature 320°C. Optimum nebulization was achieved using nitrogen at sheath gas flow rate 50 and 

auxiliary gas flow rate 17 (units not specified by the manufacturer). Scanning of total ion chromatograms (TIC) range 

was between 75-1000 m/z. For confirmation of the structure of the metabolites MS2 was carried out by using an LTQ 

Orbitrap (Thermo Fisher Scientific, UK) with the same chromatographic conditions as were used with the Exactive. 

Finally, the data were collected and processed using Xcalibur software Ver. 2.0, Thermo- Fisher Corporation, UK, 

SIEVE software Ver. 1.2.1, Thermo- Fisher Corporation, UK and Metworks Software Ver. 1.3, Thermo- Fisher 

Corporation, UK.Results and Discussion 

There was no significant loss of viability of hepatocytes incubated in KH buffer alone or with KH buffer + quercetin.  

Quercetin was metabolised very rapidly by hepatocytes and on an area % basis only 1.8% remained at 120 min (table 

1). Upon inspection of the data the range of metabolites obtained for quercetin appeared to be more complex than 

described previously and included ring scission products and their metabolites which have been described as 

products of microbial degradation (Serra et al, 2012).  It was observed that most of these “metabolites” also 

occurred in the blank incubations of quercetin in KH buffer alone. Thus it was thought perhaps that the KH 

incubation buffer might somehow be contaminated with microbes. However, a fresh batch of sterile buffer was 

prepared, tested for sterility, and the same range of degradants was observed. These degradants, which are rapidly 

formed in vitro at physiological pH under an atmosphere containing 95% oxygen, contribute to the overall 

metabolism of quercetin since they form in the incubation medium and are then metabolised by the hepatocytes. In 

order to simplify consideration of the hepatic metabolites of quercetin the degradants formed are considered first. 

The observed degradants in KH buffer are summarised in table 2 and figure 1 shows the proposed structures for the 

major chemical degradants of quercetin. Most of these degradants form almost immediately when quercetin is 

dissolved in the incubation buffer and only ca 25% of the quercetin remains after a few minutes.  The major 

component is degradant D1 which presumably exists in equilibrium with quercetin in aqueous solution.  It is likely 

that D1 forms via attack of oxygen on quercetin which results in D2 where an oxygen bridge is formed as proposed 

previously (Osoman and Makris 2010). It is possible that attack by hydroxyl plays are part in the degradation but a 

recent publication demonstrated that in the absence of oxygen quercetin does not degrade even in alkaline solution 

(Ramešová et al, 2012). D2 can be observed in the degraded mixture but at much lower levels than D1. D1 has been 

described as being a chalcone but a chalcone structure is not consistent with elimination of CO2 which is observed in 



6 
 
the MS2 spectrum of D1 (figure 2 ), where in order to readily devise a mechanism for CO2 elimination two oxygen 

atoms have to be bonded to the same carbon atom . The spectrum of D1 is unusually complex for a MS2 spectrum 

and many of the fragments are due to alternate elimination of oxygen and CO. We have tried to rationalise the 

fragmentation pattern observed in the spectrum in figure 3 and the complexity of the spectrum reinforces the 

impression that quercetin is an unusual molecule. D1 appears to act as the key intermediate in degradation which 

decomposes into mainly D3- D6 plus several minor degradants including some involving adduct formation such as 

the adducts formed to produce a dimer of quercetin and an adduct between quercetin and D1. Direct observation of 

quercetin degradation in an aqueous buffer by NMR is not an option because of its poor water solubility.  Quercetin 

is soluble in NaOH but rapidly degrades so that it was not possible to isolate the key intermediate D1 by dissolving in 

NaOH. Table 3 shows the masses of the fragment ions in MS2 spectra of those degradants which were sufficiently 

abundant to obtain and good quality MS2 spectra. After 120 min of incubation in KH buffer the quercetin has almost 

completely decomposed.  Quercetin is obviously highly reactive as reported before (Zhou et al, 2007) but so far no 

studies have reported the degradation of quercetin under physiological conditions and the resultant contribution of 

the degradants to the metabolic profile of quercetin. Table 1 shows the major metabolites formed following 

incubation of quercetin with rat hepatocytes for 30 min. and 120 min. The quercetin is largely metabolised by 30 min 

with the major metabolites being monoglucuronides, a diglucuronide, a methyl glucuronide and a mixed glucuronide 

sulphate. Small amounts of monosulfates and methyl monosulfates are also present. At 120 minutes the main 

metabolites are mixed glucuronide sulphates. The proposed metabolites are shown in figure 4. Most of these 

metabolites have been described before (van der Woude et al , 2004, Hong and Mitchell, 2006) although this the 

first study where they have been characterised by using high resolution mass spectrometry. In addition to quercetin 

metabolites, a small amount of the sulphate of D3 was formed. D3 is a major degradant of quercetin in KH buffer in 

the absence of hepatocytes but its levels are much lower in hepatocyte incubations. Thus, it would appear that the 

chemical degradation of quercetin in hepatocyte incubations is less extensive in comparison with its degradation in 

KH buffer alone which may be due to inhibition of degradation as a result of glucuronidation, sulphation, 

methylation and GSH conjugate formation. In addition to small amounts of D3 sulphate being formed, there were 

small amounts of putatively identified metabolites resulting from the methylation of D3 followed by glucuronidation, 

sulphation and sulphation in combination with glycine conjugation. Quercetin also forms three glutathione 

conjugates in small amounts (figure 5) which presumably result from addition of GSH at different positions within 
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the ring system; a GSH conjugate of D3 can also be observed in the hepatocyte incubations. It would seem likely that 

a favoured site for reaction of GSH would be at position 2 in the C ring of quercetin where it was proposed that 

addition of oxygen occurs (Osman and Makris, 2010). Also small amounts of GSH conjugates of the quercetin 

quinone can be observed as shown in figure 5. These GSH conjugates can be readily formed when quercetin is 

incubated in ammonium bicarbonate solution although the relative abundance of the conjugates is different from 

those formed in hepatocytes suggesting that in hepatocytes the reaction may be enzymatically controlled rather 

than a simple chemical reaction. In the case of the incubation in ammonium bicarbonate two peaks for the conjugate 

of equal intensity result and this would be consistent with addition at position 2 where two diastereomeric adducts 

would form since addition of GSH generates a chiral centre. Also larger amounts of a quinone GSH conjugate are 

formed in the ammonium bicarbonate incubation. The presence of GSH in the ammonium carbonate incubation 

does not inhibit the degradation of quercetin and the major degradants D3-D6 are all formed. In addition GSH 

adducts of D3-D6 can also be observed. When quercetin is incubated in KH buffer containing GSH under an 

atmosphere containing 95% oxygen, in contrast to the same experiment in ammonium bicarbonate, there was no 

reaction with GSH and very little degradation of quercetin occurred up to 180 minutes. During the course of the 

incubation, as observed by mass spectrometry, much of the GSH was converted to GSSG suggesting that the GSH 

was removing oxygen from the solution through itself becoming oxidised. This further supports the idea that the 

initiation of quercetin degradation occurs via the formation of the oxygen bridge intermediate D2. The MS2 spectra 

for some quercetin metabolites and quercetin degradant metabolites are shown in table 4 and these are consistent 

with the assigned structures.  

Conclusions 

The levels of quercetin used in the incubations in rat hepatocytes were about ten times the likely exposure from 

dietary absorption when comparing for instance the total area under the curve over 24 h for quercetin metabolites 

(ca 3 µg compared to 30 µg in the current case) absorbed from onion powder (Lee et al, 2012). However, from the 

data in table  1 it can be seen that the level of quercetin at physiological pH rapidly declines to ca 25% of the original 

concentration thus the levels used in the incubation may not be that different from the levels of exposure in human 

dosing studies. Although quercetin has been extensively studied it seems that its chemistry and metabolism are far 

from being fully understood. Its high reactivity means that, as well as acting as a free radical scavenger, it would be 

likely to form adducts with reactive structures such as thiol groups within proteins. However, it would appear from 
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the current work that its reactivity is reduced by conjugation, for instance with glucuronic acid, and this might 

explain the lack of an effect on the viability of the hepatocytes. It was observed in a trial using quercetin as an anti-

tumour agent that nephrotoxicity was a dose limiting factor and that phase II metabolism was important in reducing 

toxicity (Ferry et al 2006) The mechanism of quercetin degradation remains to be fully explained but it should be 

possible to make a more thorough study of this by using NMR particularly in 13C NMR which would be able to map 

the changes in carbon substitution during degradation. Although quercetin has been proposed as an antioxidant 

compound it may have interesting pro-oxidant and oxygen sensing properties. 
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Table 1 Metabolites of quercetin and its degradants putatively identified according to accurate mass in incubations 

with rat hepatocytes. 

 

Metabolite/Degradant [M-H]
-
 Elemental 

Composition 
Rt min. Area % 

30 min 
Area % 
120 min 

D3 153.01 C7H5O4 11.2 2.85 2.02 

Quercetin  
 

301.03 C15H9O7 21.5 0.58 
 

1.80 
 

Quercetin GSH 
Conjugate M1 

606.10 C25H24O13N3 S 14.0 0.18 0.213 

Quercetin GSH 
Conjugate M2 

606.10 C25H24O13N3 S 14.5 6.93 3.95 

Quercetin GSH 
Conjugate M3 

606.10 C25H24O13N3S 15.45 NA 0.0580 

Quercetin GSH 
Conjugate M4 

604.08 C25H22O13N3S 15.7 0.475 0.0500 

Quercetin GSH 
Conjugate M5 

604.08 C25H22O13N3S 16.2 2.69 0.540 

M6 458.08 C17H20O10N3S 6.7 0.60 1.083 

M7 458.08 C17H20O10N3S 9.4 NA 0.167 

M8 232.97 C7H5O7S 6.1 1.067 0.587 

M9 246.99 C8H7O7S 10.0 NA 0.605 

M10 246.99 C8H7O7S 10.5 NA 0.280 

M11 304.01 C10H10O8NS 6.7 NA 1.84 

M12 304.01 C10H10O8NS 9.3 NA 0.470 

Quercetin sulphate 
M13 

380.99 C15H9O10S 17.5 NA 0.138 

Quercetin sulphate 
M14 

380.99 C15H9O10S 19.3 2.43 0.47 

Quercetin glucuronide 
M15 

477.06 C21H17O13 15.3 12.8 4.54 

Quercetin 3-
glucuronide M16 

477.06 C21H17O13 17.5 10.20 1.86 

M17 343.06 C14H15O10 6.7 0.0277 0.346 

Methylated quercetin 
M18 

315.05 C16H11O7 23.9 0.074 0.068 

Methylated quercetin 
glucuronide M19 

491.08 C22H19O13 16.6 NA 5.60 

Methylated quercetin 
glucuronide M20 

491.08 C22H19O13 17.4 5.75 0.81 

Methylated quercetin 
glucuronide M21 

491.08 C22H19O13 17.7 3.22 0.79 

Methylated quercetin 
glucuronide M22 

491.08 C22H19O13 18.1 2.48 0.56 

quercetin 
monglucuronide 
sulphate M23 

557.02 C21H17O16S 13.9 16.55 4.40 

quercetin 
monglucuronide 
sulphate M24 

557.02 C21H17O16S 14.5 3.56 18.4 

quercetin 
monglucuronide 
sulphate M25 

557.02 C21H17O16S 15.0 2.17 11.4 

Methylated quercetin 
monglucuronide 
sulphate M26 

571.04 C22H19O16S 13.8 0.707 4.40 
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Methylated quercetin 
monglucuronide 
sulphate M27 

571.04 C22H19O16S 14.2 0.867 5.72 

Methylated quercetin 
monglucuronide 
sulphate M28 

571.04 C22H19O16S 14.9 0.692 5.92 

Methylated quercetin 
monglucuronide 
sulphate M29 

571.04 C22H19O16S 15.6 0.203 2.30 

Quercetin-3,7-
diglucuronide M30 

653.1 C27H25O19 13.5 13.25 14.15 

Quercetin-3,7-
diglucuronide M31 

653.1 C27H25O19 14.3 1.53 1.63 

Quercetin-3,7-
diglucuronide M32 

653.1 C27H25O19 14.7 2.13 1.89 

Methylated quercetin 
sulphate M33 

395.008 C16H11O10S 14.2 NA 0.045 

Methylated quercetin 
sulphate M34 

395.008 C16H11O10S 19.05 0.053 0.243 

Methylated quercetin 
sulphate M35 

395.008 C16H11O10S 19.5 0.055 0.11 

 

 

  



13 
 
 

Table 2 Formation of quercetin degradants in KH buffer at 0, 30 and 120 minutes. Putative identification of 
degradants according to accurate mass with < 2 ppm deviation from the proposed composition.  

 

Degradant [M-H]- Elemental 
Composition 

Rt min. Area % 0 
min 

Area % 
30 min 

Area 
% 120 

min 

C7H5O4 D3 153.0195 C7H5O4 11.9 9.7 15.3 37 

C7H5O5 D4 169.0145 C7H5O5 11.2 2.5 4.1 9.1 

C8H5O5 D5 181.0146 C8H5O5 6.8 0.62 1.15 3.3 

C8H5O6 D6 197.0095 C8H5O6 10.2 6.6 7.9 13.5 

C8H7O6 199.0252 C8H7O6 6.3 0.68 1.2 1.2 

quercetin -CO 273.041 C14H9O6 15.8 0.16 0.13 0.09 

quercetin quinone D8 299.0203 C15H7O7 22.7 3.5 3.0 2.7 

quercetin 301.0358 C15H9O7 22.2 25.8 27.4 6.20 

chalcone quinone D7 315.0155 C15H7O8 18.3 1.40 0.92 0.50 

Chalcone D1 317.0308 C15H9O8 15.8 44.5 33.9 20.3 

oxidised  chalcone 
oxygen bridge 

331.0104 C15H7O9 14.7 0.75 0.77 1.6 

quercetin oxygen 
bridge D2 

333.0261 C15H9O9 19.8 1.0 0.71 0.43 

Adduct 169/273 425.0525 C21H13O10 18.4 0.05 0.22 1.3 

197 + quercetin 
adduct 

497.0372 C23H13O13 16.6 0.68 0.99 1.3 

quercetin dimer 601.0635 C30H17O14 23.9 0.16 0.52 0.41 

quercetin + 317 617.0581 C30H17O15 19.8 0.82 0.75 0.51 
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Table 3 MS2 (35eV) data for the major degradants formed from quercetin in KH buffer. *Observed as a 

degradant following treatment with 1 M NaOH 

 

Degradant [M-H]- MS/MS fragments 

C7H5O4 D3 153.0195 109.0298 (C6H5O2 - CO2, 100%) 

C7H5O5 D4 169.0145 
151.004 (C7H3O4 - H2O,100%) 125.0246 (C6H5O3 - CO2, 1.24%) 
107.0139 (C6H3O2 - H2O and - CO2, 0.54%) 

C8H5O5 D5 181.0146 109.0295 (C6H5O2 - COCO2)? →153.02 (- CO2, 38.79%) 

C8H5O6 D6 197.0095 153.0196 (C7H5O4 - CO2, 100%), 125.02 (C6H5O2 - COCO2, 1.90%)  

quercetin –CO 
C14H9O6 

273.041 
258.0176 (C13H6O6 - CH3, 48.19%), 245.0465 (C13H9O5 - CO, 100%), 
231.03076 (C12H7O5 - COCH2, 65.40%) 229.0515 (C13H9O4 - CO2, 
84.49%), 217.0510 (C12H9O4, - COCO2, 11.34%) 

chalcone 
quinone D7 

C15H7O8 

315.0155 
287.0207 (C14H7O7 - CO, 100%), 243.0308 (C13H7O5 - COCO2, 11.99%) 
151.0043 (C7H3O4 - C8H4O4, 8.52%), 271.06 (C14H7O6 - CO2, 13.26%) 
 

*Chalcone D9 
C15H9O8 

 

317.0308 299.0194(C15H7O7 - H2O, 100 %), 271.0247 (- H2O-CO), 255.0298 
(C14H7O5 - CO2 -H2O, 10.6%),231.0298 (C12H7O5 - C3H2O3, 9.4%), 
194.9934 ((C8H3O6 19.5%),166.9985 ((C7H3O5, 9.4%) 

chalcone D1 
C15H9O8 

317.0308 

299.0182 (C15H7O7 - H2O, 53.19%) 273.0410 (C14H9O6 - CO2, 12.04%) 
255.0309 (C14H7O5 - CO2 -H2O, 7.86%) 231.0308 (C12H7O5 - C3H2O3, 
1.32%) 206.9943 (C9H3O6 - C6H6O2, 36.04%) 190.9991 (C9H3O5 - 
C6H6O3, 100%) 178.9994 (C8H3O5) 163.0044 (C8H3O4  -C7H6O4, 
18.94%) 153.0200(C7H5O4) 135.0092 (C7H3O3)   

quercetin 
oxygen bridge 

D2 
C15H9O9 

333.0261 

289.0363 (C14H9O7 - CO2, 29.46%) 181.0149 (C7H5O5 - C8H4O4, 100%) 
169.0151 (C7H5O4 - C8H4O5, 90.47%) 
109.0282 (C6H5O2 - C9H4O7, 7.72%) 

adduct 169/273 
C21H13O10 

425.0525 
407.0419 (C21H11O9 - H2O, 9.24%) 299.0207 (C15H7O7, - C6H6O3 
38.66%) 273.0412 (C14H9O6, - C7H4O7 25.81%)  

197 + quercetin 
C23H13O13 

497.0372 
345.0262 (C16H9O9 - C7H4O4, 100%) 301.0363 [C15H9O7 (-196 C8H4O6, 
61.79%)] 

quercetin dimer 
C30H17O14 

601.0635 
449.0553 (C23H13O10 - C7H4O4, 100%) 431.0420 (C23H11O10 - C7H6O4, 
1.96%) 

quercetin + 317 
C30H17O15 

617.0581 
465.0481 (C23H13O10 - C7H4O5, 100%) 
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Table 4 MS2 (35eV) data for the major metabolites formed from quercetin in hepatocyte incubations. Gluc = 

glucuronic acid –OH, G= glutathione –SH, GSH= glutathione.  

Metabolite [M-H]- Rt 
min. 

Fragment ions 

Quercetin GSH 
Conjugate  M1 

606.10 14.5 333.01 (-G, 38.2%), 299.02 (-GSH, 100%) 

Quercetin GSH 
Conjugate  M2 

606.10 15.1 333.01 (-G, 100%), 299.02 (-GSH, 2.6%)  

Quercetin GSH 
Conjugate  M3 

606.10 16.2 333.01 (-GH, 50%)  

Quercetin GSH 
Conjugate  M4 

604.08 16.9 330.99 (-G, 100%), 298 (-GSH, 0.98%) 

Quercetin GSH 
Conjugate  M5 

604.08 21.9 301.03 (-GSH, 100%)  

M8 232.97 7.0 153.02 (-SO3, 100%), 109.029 (-CO2, -SO3 39.5%) 

M10 246.99 10.0 203.002 (-CO2, 21.2%), 167.03 (-SO3, 63.5%) 

M11 304.01 7.4 260.02 (-CO2, 1.2%), 224.05 (-SO3, 100%) 

M17 343.06 7.4 167.03 (-Gluc, 67.2%) 

Quercetin sulphate 
M14 

380.99 19.9 301.03 (-SO3, 100%) 

Quercetin 
glucuronide M15 

477.06 16.2 301.03 (- Gluc, 100%) 

Quercetin 
glucuronide M16 

477.06 18.4 301.03 (- Gluc, 100%) 

Quercetin methyl 
glucuronide M19 

491.08 17.6 315.05 (-Gluc, 100%) 

quercetin 
monglucuronide 

sulphate M22 

557.02 15.0 477.06 (-SO3, 100%), 380.99 (-Gluc, 12.6%), 301.04 (-Gluc 
and SO3, 19.70%). 

quercetin 
monglucuronide 

sulphate M24 

557.02 15.6 477.06 (-SO3, 100%), 380.99 (-Gluc, 28.6%), 301.04 (-Gluc 
and SO3, 4.66%). 

Methylated 
quercetin 

monglucuronide 
sulphate M23 

571.04 
 

14.3 491.08 (-SO3, 100%), 395.01(-Gluc, 2.2%), 315.05(-SO3 and - 
Gluc, 6.91%) 

Methylated 
quercetin 

monglucuronide 
sulphate M26 

571.04 14.7 491.08 (-SO3, 100%), 395.01 (-Gluc, 2.6%), 315.05 (-SO3 and - 
Gluc, 23.7%) 

Methylated 
quercetin 

monglucuronide 
sulphate M27 

571.04 16.3 491.08 (-SO3, 100%), 395.01 (-Gluc, 6.64%), 315.05 (-SO3 and 
- Gluc, 6.97%) 

Quercetin-3,7-
diglucuronide M30 

653.1 14.1 477.06 (-Gluc, 100%), 301.03 (-2Gluc, 8.3%) 

Quercetin-3,7-
diglucuronide M31 

653.1 14.3 477.06 (-Gluc, 100%), 301.03 (-2Gluc, 7.76%) 

Methylated 
quercetin sulphate 

M34 

395.005 19.6 315.05 (-SO3, 100%) 

Methylated 
quercetin sulphate 

M35 

395.005 20.1 315.05 (-SO3, 100%) 
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Figure 1 Proposed structures for major degradants formed from quercetin in KH buffer. 
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Figure 2 MS2 spectrum (35eV) of the key intermediate D1 of quercetin degradation. 
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Figure 3 Proposed MS2 (35eV) fragmentation pathways of the key intermediate D1 in quercetin degradation. 
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Figure 4 Proposed structures of the metabolites of quercetin formed in incubations with rat hepatocytes. Gluc = 

glucuronic acid. 

 

  



20 
 
Figure 5 Extracted ion traces showing formation of GSH conjugates of quercetin in hepatocytes and ammonium 

bicarbonate solution. 

 

 


