Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Sintering of passivated gold nanoparticles under the electron beam

Chen, Y. and Palmer, R.E. and Wilcoxon, J.P. (2006) Sintering of passivated gold nanoparticles under the electron beam. Langmuir, 22 (6). pp. 2851-2855. ISSN 0743-7463

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Time-lapse studies of a film of passivated gold nanoparticles under electron beam irradiation have been performed using a transmission electron microscope, revealing the microscopic dynamics of the sintering process at the single nanoparticle level. It is found that the sintering of individual passivated gold nanoparticles under electron irradiation is local and mainly depends on the sensitivity of the passivating ligands to the electron beam. A multilayer film is less stable than monolayer film, consistent with the enhanced generation of secondary electrons. The observations also reveal a significant difference between the sintering of passivated nanoparticles and bare metal particles, especially regarding the size effect on the sintering rate. The formation of a neck between adjacent nanoparticles further indicates a mechanism driven by surface diffusion rather than Ostwald ripening at the initial sintering stage.