Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Dielectronic recombination of Fe 3pq ions: a key ingredient for describing x-ray absorption in active galactic nuclei

Badnell, N.R. (2006) Dielectronic recombination of Fe 3pq ions: a key ingredient for describing x-ray absorption in active galactic nuclei. Astrophysical Journal, 651 (1). L73-L76. ISSN 0004-637X

[img]
Preview
PDF (strathprints005108.pdf)
strathprints005108.pdf

Download (192kB) | Preview

Abstract

We have carried out multiconfiguration Breit-Pauli AUTOSTRUCTURE calculations for the dielectronic recombination (DR) of Fe8+-Fe12+ ions. We obtain total DR rate coefficients for the initial ground level that are an order of magnitude larger than those corresponding to radiative recombination (RR), at temperatures where Fe 3pq () ions are abundant in photoionized plasmas. The resultant total (DR+RR) rate coefficients are then an order of magnitude larger than those currently in use by photoionized plasma modeling codes such as CLOUDY, ION, and XSTAR. These rate coefficients, together with our previous results for and 1, are critical for determining the ionization balance of the M-shell Fe ions that give rise to the prominent unresolved-transition-array X-ray absorption feature found in the spectrum of many active galactic nuclei. This feature is poorly described by CLOUDY and ION, necessitating an ad hoc modification to the low-temperature DR rate coefficients. Such modifications are no longer necessary, and a rigorous approach to such modeling can now take place using these data.