Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Determination of biogeochemical properties of marine particles using above water measurements of the degree of polarization at the Brewster angle

McKee, David J.C. and Chami, Malik (2007) Determination of biogeochemical properties of marine particles using above water measurements of the degree of polarization at the Brewster angle. Optics Express, 15 (15). pp. 9494-9509. ISSN 1094-4087

[img]
Preview
PDF
OptExpr_2007.pdf - Final Published Version

Download (355kB) | Preview

Abstract

Retrieval of biogeochemical parameters from remotely sensed data in optically complex waters such as those found in coastal zones is a challenging task due to the effects of various water constituents (biogenic, nonalgal and inorganic particles, dissolved matter) on the radiation exiting the ocean. Since scattering by molecules, aerosols, hydrosols and reflection at the sea surface introduce and modify the polarization state of light, the polarized upward radiation contains embedded information about the intrinsic nature of aerosols and suspended matter in the ocean. In this study, shipborne above water angularly resolved visible/near infrared multiband measurements of the degree of polarization are analysed against their corresponding in-situ biogeochemically characterized water samples for the first time. Water samples and radiometric data were collected in the English Channel along an inshore-offshore transect. Angular variations in the degree of polarization P are found to be consistent with theory. Maximum values of P are observed near the Brewster viewing angle in the specular direction. Variations in the degree of polarization at the Brewster angle (PB) with water content revealed that the suspended particulate matter, which is mainly composed of inorganic particles during the experiment, contributes to depolarise the skylight reflection, thus reducing PB. An empirical polarization-based approach is proposed to determine biogeochemical properties of the particles. The concentration of inorganic particles can be estimated using PB to within ±13% based on the dataset used. Larger sets of polarized measurements are recommended to corroborate the tendency observed in this study.