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Natural Aurora Borealis

Photograph by Jan Curtis, near Fairbanks, Alaska
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Sketch of experimental setup

The Earth’s ionosphere used as a natural laboratory to study turbulence in an
unlimited magnetised plasma.

Diagnostics: Escaping radiation, radars, optical emissions, etc.

Courtesy of Bo Thidé (www.physics.irfu.se)
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High Frequency Active Auroral Research Program (HAARP)

HAARP research station, near Gakona, Alaska

Established 1993, last major upgrade 2007. Designed and built by BAE
Advanced Technologies.
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Observations of descending aurora above HAARP

Pedersen, Gustavsson, Mishin et al., Geophys. Res. Lett., 36, L18107 (2009).
Pedersen, Mishin et al., Geophys. Res. Lett., 37, L02106 (2010).
Mishin & Pedersen, Geophys. Res. Lett., 38, L01105 (2011).
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Radiation pattern HAARP

HAARP beam 3.4MHz directed along Magnetic Zenith. Beam width about 15◦.
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Rays of ordinary mode waves

Ray-tracing
dk
dt = −∇rω

dr
dt = ∇kω

Appleton-Hartree
dispersion relation
gives ω(k, r)

Magnetic field B0 = 5× 10−5T, tilted 14.5◦ to vertical. Electron cyclotron
frequency fce = 1.4MHz.

f0 = 3.2 MHz transmitted frequency, ∼ 100 m vacuum wavelength.

Ordinary mode waves are reflected near the critical layer where ω = ωpe.



IOP, LONDON, 14-17 APRIL 2014 8

Rays closeup near reflection point
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Full-wave simulation model

o Electromagnetic wave propagation. Inhomogeneous, magnetized plasma.

o Nonlinear coupling to electron and ion dynamics.
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Standing wave pattern vertical electric field

Full wave simulations at different angles of incidence. 1 V/m injected O mode.
One millisecond after switch-on of transmitter
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Resonant absorption — Spitze angle
Linear absorption takes place at certain angles of incidence between
magnetic field angle and vertical.

Y = fce/f0 = 0.4 and θ = 14.5◦

Spitze angles χS = ± arcsin[
√
Y/(1 + Y ) sin(θ)] ≈ ±8.04◦

T = absorbed intensity / injected intensity.
Efficient absorption within angles ∼ ±1◦ from Spitze→ relatively small region
compared to typical beam width.

E. Mjølhus, Radio Science 25, 1321 (1990)
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10 milliseconds after switch-on: Turbulence

Coupling between high-frequency electron plasma waves and low-frequency
ion waves.
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Physics at different length-scales

Small-scale strong Langmuir turbulence: few tens of centimetre structures.
Large amplitude electric field envelopes trapped in density cavities.
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Full-scale simulation, vertical incidence

B. Eliasson and L. Stenflo, J. Plasma Phys. 76, 369 (2010).
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Closeup 300 meter window

B. Eliasson and L. Stenflo, J. Plasma Phys. 76, 369 (2010).
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Closeup 20 meter window

B. Eliasson and L. Stenflo, J. Plasma Phys. 76, 369 (2010).
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Electron acceleration by plasma waves

Electrons can surf on the wave if the wave’s and electron’s velocities almost
the same. Many waves give random walk and diffusion of electron velocity.

Fokker-Planck equation and diffusion coefficient.
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Sagdeev & Galeev (1969); Stix, Waves in Plasmas (1992).
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Diffusion coefficients
and Fokker-Planck
solutions
(velocity distribution)
for different
angles of incidence

Most significant
acceleration at
3.5◦ and 10.5◦
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Energy distribution with high-energy tails

Electrons above 2 eV give rise to optical emissions.
Electrons above 12 eV ionize neutrals to ions (creates a plasma).
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Dynamical model for ionization and recombination

o Transport model for energetic electrons through the ionosphere.

o Ionization due to collisions between high energy electrons and neutral
atoms.

* Ionization of atomic and molecular oxygen and nitrogen by high-energy
electrons
(O + e− → O+ + 2e− and O2 + e− → O+

2 + 2e−, etc.)
* Production of molecular oxygen ions and nitrogen monoxide ions via

charge exchange collisions
(O+ +O2 → O+

2 +O and O+ +N2 → NO+ +N )
* Dissociative recombination between electrons and molecular ions

O+
2 + e− → 2O and NO+ + e− → N +O).
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Simulated descending artificial ionospheric layer

o Ionization fronts descending from about 200 km to 150 km in a few
minutes, consistent with the experiments.

o Physics on microsecond→ millisecond→ several minutes timescales!
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Scaling to laboratory experiment

o Decrease length scale a factor 10 000 to fit into experiment on
1-m scale

o Radio waves 3MHz frequency and 100 m wavelength→
microwaves 10GHz and 3 cm wavelength

o Radio wave intensity 1 mW/m2→ microwave intensity 100

kW/m2.

o Plasma density 1011m−3→ 1018m−3–1019m−3.

o New linear plasma helicon device planned at Strathclyde
University to produce plasmas with typical diameter 50 cm,
densities above 1018 and magnetic field 0.05-0.1 T.
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References on numerical modelling

o B. Eliasson, Full-scale simulations of ionospheric Langmuir turbulence.
Modern Physics Letters B 27(8), 1330005 (2013).

o B. Eliasson, X. Shao, G. Milikh, E. V. Mishin, and K. Papadopoulos,
Numerical modeling of artificial ionospheric layers driven by high-power
HF-heating, J. Geophys. Res. 117, A10321 (2012).

o B. Eliasson and L. Stenflo, Full-scale simulation study of electromagnetic
emissions: The first ten milliseconds, J. Plasma Phys. 76, 369-375 (2010).
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ionospheric turbulence, Comput. Phys. Commun. 178, 8-14 (2008).

o B. Eliasson and L. Stenflo, Full-scale simulation study of the initial stage of
ionospheric turbulence, J. Geophys. Res. 113, A02305 (2008).

o B. Eliasson, Full-scale simulation study of the generation of topside
ionospheric turbulence using a generalized Zakharov model, Geophys.
Res. Lett. 35, L11104 (2008).
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Summary

o Formation of descending aurora/ionization fronts in
experiments. Ionosphere used as a plasma laboratory!

o Electron quasi-linear acceleration by strong Langmuir
turbulence

o Optical emissions and ionization by energetic electrons

o Scaling to laboratory experiment

o Physics occurs on vastly different length- and time-scales,
(microseconds to minutes, cm to tens of km)!

o Work in progress: Upper hybrid heating and coupling to
electron Bernstein modes, stochastic heating, Vlasov
simulations.


