Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

One-step batch synthesis of high solids monodisperse styrene/glycidyl methacrylate and styrene/methacrylic acid emulsion copolymers

Mouaziz, H. and Larsson, A.lib/metafield:join_name.lastSherrington, D.C. (2004) One-step batch synthesis of high solids monodisperse styrene/glycidyl methacrylate and styrene/methacrylic acid emulsion copolymers. Macromolecules, 37 (4). pp. 1319-1323. ISSN 0024-9297

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Surfactant-free emulsion copolymerizations of styrene (St) with glycidyl methacrylate (GMA) and styrene (St) with methacrylic acid (MAA), initiated by either potassium or ammonium persulfate, have been carried out to assess the possibility of making monodisperse latices of relatively high solids content (similar to30-50 wt %) in a one-step batch process. Evaluation of the effect of the functional comonomer content in the range 2-40 wt % and the latex solids content in the range 2-33 wt % has allowed identification of compositions which do indeed allow monodisperse particles to be prepared at solid contents up to 33 wt % in a one-pot process. In addition, a monodisperse sample with both epoxy and carboxylic acid functionalities has been successfully prepared at 33 wt % solids contents.