Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

One-step batch synthesis of high solids monodisperse styrene/glycidyl methacrylate and styrene/methacrylic acid emulsion copolymers

Mouaziz, H. and Larsson, A. and Sherrington, D.C. (2004) One-step batch synthesis of high solids monodisperse styrene/glycidyl methacrylate and styrene/methacrylic acid emulsion copolymers. Macromolecules, 37 (4). pp. 1319-1323. ISSN 0024-9297

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Surfactant-free emulsion copolymerizations of styrene (St) with glycidyl methacrylate (GMA) and styrene (St) with methacrylic acid (MAA), initiated by either potassium or ammonium persulfate, have been carried out to assess the possibility of making monodisperse latices of relatively high solids content (similar to30-50 wt %) in a one-step batch process. Evaluation of the effect of the functional comonomer content in the range 2-40 wt % and the latex solids content in the range 2-33 wt % has allowed identification of compositions which do indeed allow monodisperse particles to be prepared at solid contents up to 33 wt % in a one-pot process. In addition, a monodisperse sample with both epoxy and carboxylic acid functionalities has been successfully prepared at 33 wt % solids contents.