Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Use of confocal and multiphoton microscopy for the evaluation of micro-optical components and emitters

Girkin, J.M. and Gu, E. and Griffin, C. and Choi, H.W. and Dawson, M.D. and McConnell, G. (2004) Use of confocal and multiphoton microscopy for the evaluation of micro-optical components and emitters. Microscopy Research and Technique, 64 (4). pp. 293-296. ISSN 1059-910X

[img]
Preview
Text (strathprints000051)
strathprints000051.pdf - Accepted Author Manuscript

Download (71kB) | Preview

Abstract

We report on the application of confocal and multiphoton microscopic techniques for the evaluation of the latest generation of micro optical components. The optical emitting characteristics of arrays of matrix addressable GaN micrometer-sized light emitting diodes (micro-LEDs) have been measured using a commercial confocal microscope utilising the LEDs' own emission along with reflection confocal microscopy to determine the surface structure. Multiphoton induced luminescence from the 10-20-micron diameter emitters has also been used to examine the structure of the device and we compare this with electrically induced emission. In related work, the optical properties of micro lens arrays (10-100-micron diameter) fabricated in SiC, Sapphire, and Diamond have been determined using transmission confocal microscopy. Such optical microscopy techniques offer a simple, non-destructive method to determine the structure and performance of such novel devices.