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Effects of relativistic electron temperature on stimulated Raman scattering and stimulated Brillouin scattering instabili-
ties for high intensity lasers propagating in underdense plasma are studied theoretically and numerically. The dispersion
relations for these instabilities are derived from the relativistic fluid equation. For a wide range of laser intensity and
electron temperature, it is found that the maximum growth rate and the instability region in k-space can be reduced at
relativistic electron temperature. Particle-in-cell simulations are carried out, which confirm the theoretical analysis.

I. INTRODUCTION

The propagation of short intense lasers in underdense plas-
ma has been intensively studied, since it is closely relat-
ed to a number of applications such as laser-driven particle
acceleration1, advanced concept of inertial confined fusion
including fast ignition with electron or ion beams2–4, shock
ignition5, impact ignition6, and so on. Earlier studies7 on
short-pulse laser plasma interactions are mostly based on the
cold plasma model assuming that the plasma electrons cannot
be heated to high temperature by short pulse lasers in a short
interval of time. However, theory and simulations suggest that
relativistic high temperatures at the multi-MeV level can be
achieved by intense pulses quickly.8–12 Therefore, the trailing
parts of laser pulses often interact with plasmas with high tem-
peratures. Moreover, in the case of multi-pulse laser plasma
interaction, the following-up pulses may encounter high tem-
perature plasma created by foregoing laser pulses. It is there-
fore interesting to consider the effects of relativistic plasma
temperatures on laser propagation.

Several theoretical and numerical studies have been report-
ed on the interaction of laser with relativistic hot plasmas.13–15

Tzeng et al.13 have shown that the plasma temperature can
suppress the relativistic self-focusing of laser; Bergman and
Eliasson14 have studied the plasma dispersion relation in high
temperature plasma; Li et al.15 have investigated the effect of
plasma temperature on laser hosing instability. In these cas-
es, the thermal velocity is comparable to the quiver velocity
of the electrons in the laser fields and the electron mass is
modulated by its thermal velocity too. The instability growth
rate of stimulated Raman scattering (SRS) has been calculat-
ed analytically in relativistic hot plasma with Maxwellian16
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or waterbag17,18 electron distribution function. These stud-
ies indicated that the hot plasma electron temperature tends to
weaken the SRS instability. However, the Jüttner-Synge dis-
tribution is more suitable to describe the relativistic plasma,
which is considerably different from either the Maxwellian
distribution or the waterbag distribution to describe the laser
propagation when plasma electron temperature Te is above
511 keV.19 Furthermore, the effects of relativistic temperature
on simulated Brillouin scattering (SBS) are still not consid-
ered so far.

In this paper, we investigate the effects of relativistic plas-
ma electron temperature on SRS and SBS instabilities by the-
oretical analyses and numerical simulations. In Sec. II, the
dispersion relations for SRS and SBS are derived for plasmas
with relativistic hot electrons. The growth rates are obtained
numerically and the maximum growth rate of SRS and SBS
are given under certain conditions. In Sec. III, particle-in-cell
(PIC) simulations are carried out to investigate the develop-
ment of SRS and SBS. Comparison is made between the cases
of non-relativistic and relativistic plasmas. We summarize our
results in section IV.

II. ANALYTICAL MODELS FOR THE PARAMETRIC
INSTABILITIES IN HOT PLASMA

A. Dispersion relation of SRS

We start with the relativistic fluid equation of motion for
electron19,20,

me
∂(αγve)
∂t

=
e

c

∂A
∂t

+ e∇ϕ− αmec
2∇γ − ∇P

ne
, (1)

where ve, e, ne and me are the electron fluid velocity, elec-
tron charge, electron density and electron mass, respective-
ly. A is the vector potential and ϕ is the electrostatic poten-
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tial. γ = 1/
√
1− ve · ve/c2 is the relativistic factor. The

dimensionless parameter α represents the relativistic mass in-
crease with random motion of the particles. It is defined as
α = (P + E)/nmec

2, where P is the isotropic pressure,
E = m−2

e c2
∫
γf(p)d3p is the energy density, and n = ne/γ

is the particle density in the local rest frame.15 It is clear that
α is a function of electron thermal velocity θte =

√
Te0/me.

For cold plasmas, P = 0, E = nmec
2, hence α = 1. In our

derivation, we assume that α is uniform in space. Here we
wish to point out that the factor α depends significantly on the
distribution function. In particular, the Jüttner-Synge distribu-
tion with f(p) = nµ[4πcK2(µ)]

−1exp(−µ
√
1 + p2/m2

ec
2)

where µ = mec
2/Te0 and K2 is the modified Bessel function

of the second kind, gives a much larger α than the Maxwellian
distribution for a given thermal velocity θte when θte/c > 1.15

To derive the dispersion relation for the SRS instability,
the ions can be treated as a stationary and neutralizing back-
ground. Let us take the normalized laser amplitude a =

eA/mec
2, and use ve ∼ ac/αγ, we have γ =

√
1 + a2/α2

as shown in Ref. [15]. This means that the mass of rela-
tivistic hot particles increase with relativistic temperature and
becomes heavy enough to be driven by laser, i.e., the rela-
tivistic temperature modulation suppresses the effects of laser.
Writing a = a0 + ã, where ã is a small perturbation, we can
simplify γ ≃ γ0 + (a0 · ã)/α2γ0, where γ0 =

√
1 + a20/α2.

The SRS is considered as an adiabatic process with p/nβ =
const, where β = (2 + N)/N and N is the number of
freedom degrees.19 Using first order linearization, we write
ve = ve0 + ve1, ne = ne0 + ne1, ϕ = ϕ1. Substituting these
relations into Eq. (1) and using Poisson’s equation along with
the equation of continuity, one obtains the equation for the
electron density fluctuation

(α
∂2

∂t2
+ ω′2

p − βθ2te
γ0

∇2)δne =
c2

αγ20
∇2(a0 · ã), (2)

where δne = ne1/ne0, ω′
p =

√
4πne0e2/meγ0 = ωp/

√
γ0.

With the usage of the Coulomb gauge ∇·A = 0, Ampere’s
law yields

(∇2 − 1

c2
∂2

∂t2
)A = −4πJ

c
+

1

c

∂

∂t
∇ϕ. (3)

Combining Eq. (3) and ∂
∂t∇ϕ = 4πJl, where Jl reprents the

longitudinal current, we obtain the equation for the propaga-
tion of a light wave in plasma

(∇2 − 1

c2
∂2

∂t2
)a =

ω2
p

αγc2
(1 + δne)a. (4)

Ignoring the perturbation term, Eq. (4) yields the dispersion
relation for electromagnetic waves in relativistic hot plasma,

ω2
0 = k20c

2 + ω′2
p /α. (5)

Note that when Te0 is very high, the plasma dispersion is sig-
nificantly reduced. Making use of the Taylor expansion to the
first order γ−1 = γ−1

0 − a0 · ã/γ30α2, then the first-order per-
turbation of Eq. (4) is reduced to

(
∂2

∂t2
− c2∇2 +

ω′2
p

α
)ã =

ω′2
p

α
(

a2
0 · ã
γ20α

2
− a0δne). (6)

Equations (2) and (6) generally describe the nonlinear cou-
pling between the electromagnetic wave and the plasma oscil-
lations for SRS in hot plasma. In one-dimension case, assum-
ing the perturbation forms as δne = (n1/2)e

iψ + c.c., ã =
(a+/2)eiψ+ + (a−/2)e

iψ− + c.c., a0 = (a0/2)eiψ0 + c.c.,
where ψ = kx − ωt, ψ0 = k0x − ω0t, ψ± = (k ± k0)x −
(ω ± ω0)t, and considering circularly polarized laser with
a2
0 = |a0|2/2 = a20/2 and γ0 =

√
1 + a20/2α

2, we obtain
the dispersion relation for the SRS instability

ω′2
p a

2
0

4α3γ20
(
c2k2α

De
+ 1)(

1

D+
+

1

D−
) = 1, (7)

whereDe = −αω2+ω′2
p +3k2θ2te/γ0, D± = −ω2

±+k2±c
2+

ω′2
p /α = −ω2+k2c2±2(k0kc

2−ω0ω). If α = 1 and θte = 0,
Eqs. (5) and (7) describe cold plasmas case.7

For a tenuous plasma, one can find approximate solution-
s of Eq. (7). For forward Raman scattering, we take ω =
ω′
p/
√
α + iΓFRS , ck = ω′

p/
√
α, and assume that ΓFRS ≪

ω′
p/
√
α ≪ ω0. Substituting these expressions into Eq. (7),

we obtain the maximum growth rate for the forward scatter-
ing

ΓFRS =
ω′2
p a0√

8α2γ0k0c
. (8)

For backward Raman scattering, we set D− = 0, ω =

ωek/
√
α + iΓRBS , where ωek =

√
ω′2
p + 3k2θ2te/γ0.

Solving for k from Eq. (7), we get k = k0 +√
−ω′2

p /α+ (ωek0/
√
α− ω0)2/c which corresponds to the

maximum growth rate for the backward scattering, where

ωek0 =
√
ω′2
p + 3k20θ

2
te/γ0. In the limit of ΓRBS ≪ ωek,

the maximum growth rate turns out to be,

ΓRBS =
ω′
pa0ck

4αγ0
√
ωek(ω0

√
α− ωek)

. (9)

Equations (8) and (9) show that the thermal temperature sup-
presses the instability growth rates. If α = 1 and θte = 0,
the maximum growth rates reduce to the cold plasma limit.7,21

For α = 1 and γ0 = 1, they exhibit non-relativistic laser case
with the Maxwellian distribution.22

To understand the thermal effects on SRS, we have numer-
ically solved Eq. (7) and plotted the real and imaginary parts
of ω in Fig. 1, for temperatures, Te0 = 1 keV, 100 keV, 800
keV, 1 MeV and 1.5 MeV, and the corresponding α = 1.005,
1.549, 6.530, 8.051 and 11.899, respectively. In our numer-
ical analyses, all the frequency terms are normalized by ω0,
and wave vector k is normalized by ω0/c. The solutions of
Eq. (7) define the instability regions, where the linear growth
rates exist. Figure 1(a) gives the instability growth rates for
the non-relativistic intensity laser case, where the instabili-
ties are found in limited k space. It shows that the maximum
growth rates of both forward and backward scattering insta-
bilities are reduced with increase in temperature, while the
real part Re(ω) corresponding to the maximum growth rate
shifts from 0.33 to 0.7. Also the instability region in k-space
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FIG. 1. (color online) Variation of real and imaginary part (growth
rate of SRS) of ω/ω0 with kc/ω0, which are obtained from the nu-
merical solution of Eq. (7). (a) Te0 = 1 keV and 100 keV, when
a0 = 0.1 and plasma density ne0 = 0.1nc. (b) Te0 = 1 keV and 800
keV, when a0 = 1 and plasma density ne0 = 0.1nc. (c) Te0 = 1 keV
and 1.5 MeV, when a0 = 3 and plasma density ne0 = 0.3nc

shifts from 1.53 to 1.08 and becomes narrow for the back-
ward scattering as the electron temperature increases from 1
keV to 100 keV. Figures 1(b) and 1(c) show the dispersion
curves for the relativistic laser amplitudes. At low tempera-
tures, the instability region becomes wider and growth rates
become larger at higher laser amplitude and plasma density,
in the meanwhile, the instability can develop even when the
plasma density is higher than the quarter critical density as
clarified before16,21. At a0 = 3 and ne0 = 0.3nc, where
nc = meω

2
0/4πe

2 is the critical density, the backward and

forward scattering regions are found to merge with each oth-
er. However, when the electron temperature is increased to
the MeV, both growth rates and instability regions are reduced
considerably. One may note from Fig. 1, that the frequency
of the plasma wave ω increases when the temperature Te0 is
increased, which means the frequency of backscattering light
ωs = ω0 −ω will decrease. This is clear from the behavior of
the real part Re(ω) = ωek/

√
α that, when Te0 increases Re(ω)

grows quickly for smaller values of k and tends to saturate at
higher values of k.

B. Dispersion relation of SBS

To derive the dispersion relation for SBS, we consider S-
BS as a low frequency perturbation, and use the isothermal
approximation in Eq. (1), neglecting the electron inertial ter-
m. Linearizing the continuity equation for ions and assuming
ne0 = Zni0 and ne1 ≈ Zni1, we obtain the density perturba-
tion equation as follows15

(
∂2

∂t2
− c2s∇2)δne =

Zmec
2

γ0miα
∇2(a20 · ã), (10)

where cs =
√

(ZTe0 + 3Ti0)/mic2, Z is the ion charge. The
wave equation is the same as Eq. (6). Combining Eqs. (6) and
(10), we obtain the dispersion relation for SBS

ω′2
p a

2
0

4α3γ20
(
Zmec

2k2αγ0
Dimi

+ 1)(
1

D+
+

1

D−
) = 1 (11)

where Di = k2c2s − ω2, and D± is defined as before.
We can find approximate solutions for Eq. (11) under cer-

tain conditions. For forward Brillouin scattering, we consider
high electron temperature case, i.e., kcs ≃ ωpi or kθte ≃ ωp,
where ωpi = ωp

√
Zme/mi. Substituting ω = ωpi + iΓFBS

into Eq.(11), we obtain the maximum growth rate for the for-
ward scattering

ΓFBS =
ωpiω

′
pa0√

8α3γ0ω0

. (12)

For backward Brillouin scattering, we have D− = 0 and k =
2k0−2csω0/c

2. Taking ω = kcs+iΓBBS , then the maximum
growth rate for the backward scattering turns out to be

ΓBBS =
ω′
pa0c

2
√
2α

√
k0Zme

micsω0γ0
. (13)

For α = 1 and γ0 = 1, the Eqs. (11) - (13) become to non-
relativistic case.22

We have solved Eq. (11) numerically to examine the effect-
s of relativistic plasma temperature on SBS. As an example,
we take mi/Zme = 1836. Figure 2(a) shows the variation
of growth rate for non-relativistic laser amplitude a0 = 0.1.
When the electron temperature increases, both the instabili-
ty region and maximum growth rate decreases. The real part
Re(ω) corresponding to the maximum growth rate shifts from
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FIG. 2. (color online) Variation of real and imaginary part (growth
rate of SBS) of ω/ω0 with kc/ω0, which are obtained from the nu-
merical solution of Eq. (11). (a) Te0 = 1 keV and 100 keV, when
a0 = 0.1 and plasma density ne0 = 0.36nc. (b) Te0 = 1 keV and 1
MeV, when a0 = 1 and plasma density ne0 = 0.9nc.

0.003 to 0.015. However, the SBS still exists even when Te0
= 100 keV. This will be examined in our particle-in-cell sim-
ulation in the next section. From Eq. (5) we know that as the
temperature increases, k0 increases. For backward Brillouin
scattering we have k = 2k0 − 2csω0/c

2 ≃ 2k0. Hence k
shifts from 1.6 to 1.73 when Te0 increases from 1 keV to 100
keV. Figure 2(b) shows the growth rate for relativistic laser
amplitude a0 = 1. When Te0 = 1 keV, the instability region
is very large, and the maximum growth rate is high. When
the temperature Te0 = 1 MeV, the instability region becomes
very narrow, and the maximum growth rate decreases signifi-
cantly. Note that when Te0 = 1 MeV, the imaginary part of the
forward scattering is even larger than the back scattering.

III. PIC SIMULATIONS

A. Simulation results of SRS

To validate the theoretical analysis given in section II, we
carried out simulations using the one dimension particle-in-
cell (1D-PIC) code KLAP23. In our simulations, the Jüttner-
Synge distribution is taken when Te0 > 500 keV. The length

FIG. 3. (color online) PIC simulations of SRS, where the incident
laser amplitude and plasma electron density are a0 = 1 and ne0 =
0.1nc and the plasma electron temperature is Te0 = 1 keV or Te0 =
800 keV. (a) Temporal profiles of the backscattering light. (b) Fourier
transform of the back scattered light. (c) Fourier transform of the
back scattered light in different time windows for the case with Te0 =
1 keV. (d) Electron density distributions at different time. (e) Spatial
Fourier transform of plot (d). (f) Energy distributions of electrons at
200τ and 500τ for different initial electron temperatures. Ne is the
relative electron number.

of our simulation box is 450λ with 200 cells per wavelength,
where λ is the incident laser wavelength. We put 50 particles
per cell. Left vacuum and right vacuum regions occupy 30λ
and 170λ, respectively, the rest is occupied by plasma. In the
front of the plasma, a 10λ long linear density ramp is added.
The homogeneous plasma density is ne0 = 0.1nc. The pump
laser is a semi-infinite pulse, which has a 25λ ramp before
reaching the uniform amplitude at a0 = 0.1 or a0 = 1. In or-
der to emphasis the temperature effect, we take different initial
temperatures of plasma. In addition, when laser propagates in
plasma, the electrons are heated at the same time.

Figure 3(a) plots the electric field of the backscattered light
Ey , which is normalized by meω0c/e, as a function of time
under different initial electron temperatures. It shows the am-
plitude of the backscattering light with initial temperature Te0
= 1 keV increases rapidly, while the amplitude for Te0 = 800
keV is comparatively small and grows very slowly with time.
This clearly shows that the SRS instability is suppressed sig-
nificantly at high temperatures. When t > 700τ where τ is the
wave period of the incident laser, the amplitude of backscat-
tering light at Te0 = 1 keV starts to decrease significantly, then
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it keeps almost a low level comparable to that for Te0 = 800
keV. This can be considered as a result of plasma heating dur-
ing the laser propagation when the initial plasma temperature
is low. The calculated temperature in the Te0 = 1 keV case
is nearly 1 MeV at 700τ , which is high enough to reduce the
SRS instability considerably. The temperature suppression ef-
fect can also be seen from spectra of the backscattering light
given in Fig. 3(b). At Te0 = 1 keV, the spectrum of the s-
cattered light is very broad, which is different from the linear
dispersion in cold plasma. This kind of behavior is found in
nonlinear SRS24–27 and plasma heating. At Te0 = 800 keV,
only the spectrum with relatively low frequency is dominan-
t. The spectrum peak at 0.13, i.e., the real part of the plas-
ma frequency is 0.87. It is in agreement with the value of
frequency given in Fig. 1(b), i.e., Re(ω) ≃ 0.87. To show
the plasma heating effects on SRS, we calculate the frequen-
cy spectrum for the scattered light for the temperature Te0 =
1 keV in two time windows: 0τ to 333τ and 667τ to 1000τ ,
where the latter time period is when the SRS is considerably
reduced. Note that the corresponding spectrum is comparable
to the one obtained for Te0 = 800 keV. This also suggests that
it is the plasma heating that leads to reduced SRS found in
Fig. 3(a). Figure 3(d) shows the electron density oscillations
associated with the SRS instability. In order to study the linear
growth process, we compare electron density for the temper-
atures Te0 = 1 keV and 800 keV at different time. One may
see much stronger fluctuations in plasma for Te0 = 1 keV at
t = 80τ than the one with Te0 = 800 keV at t = 200τ . This
means larger instability growth rate occurs at lower tempera-
ture Te0 = 1 keV. The space Fourier transform of Fig. 3(d) is
shown in Fig. 3(e). It displays strong fluctuations in broad k
space when Te0 = 1 keV, which implies that both SFRS and
SRBS have been developed at t = 80τ . In contrast, it is clear
from the Fig. 3(e) that there is only a small peak oscillation at
k ≃ 1.04, for Te0 = 800 keV, which is in agreement with Fig.
1(b).

The evolution of the plasma electron temperature can di-
rectly reflect the SRS development. For Te0 = 800 keV, the en-
ergy spectrum remains the same in the time interval t = 200τ
to 500τ as shown in Fig. 3(f). The situation changes dramat-
ically for Te0 = 1 keV. In the early stage, due to rapid devel-
opment of the SRS instability, strong electron plasma wave
is produced and electrons are heated quickly. What’s more, a
high amplitude of backscattering light is produced. It has been
found that such high amplitude scattered light can trigger the
stochastic heating and acceleration of electrons together with
the incident laser.28 These lead to rapidly increase in the elec-
tron temperature to a level even higher than that found for Te0
= 800 keV case and the formation of a high energy tail of hot
electrons. Later at t = 700τ , the SRS is suppressed signifi-
cantly.

Under non-relativistic conditions our theory still works
well, it can be seen from Fig. 4, where the incident laser in-
tensity is a0 = 0.1, and plasma density ne0 = 0.1nc. The
spectrum of backscattering light obtained at t = 700τ for Te0
= 1 keV is broad and the amplitude is large as shown in Fig.
4(a). The physical mechanism is similar to the one obtained
for a0 = 1, ne0 = 0.1nc in Fig. 3(b). For Te0 = 100 keV,

FIG. 4. (color online) PIC simulations of SRS, where the incident
laser amplitude and plasma electron density are given by a0 = 0.1
and ne0 = 0.1nc and the plasma electron temperature is Te0 = 1
keV or Te0 = 100 keV. (a) Fourier transform of the back scattered
light. (b) Space Fourier transform of electron density distributions in
longitudinal direction.

the scattered light intensity is much smaller than the intensity
for Te0 = 1 keV. The spectrum of backscattering wave peaks
at ωs ≃ 0.3, i.e., ω ≃ 0.7 which is the same as Fig. 1(a). In
order to separate nonlinear effects, we compare k modes for
the temperatures Te0 = 1 keV and 100 keV at different times,
as shown in Fig. 4(b). When Te0 = 1 keV, the unstable k
modes are broad with a peak at 1.53, which is in agreement
with the results obtained in Fig. 1(a). For Te0 = 100 keV, the
unstable k modes are narrowed and the peak shifts to 1.05,
which is very close to the value 1.08 obtained from Fig. 1(a).
Hence the results obtained using PIC simulations are in close
agreement with the theoretical analysis.

B. Simulation results of SBS

From the analysis given in Sec. IIA, we found that the SRS
instability can develop even when the density is higher than
the quarter critical density, when the incident laser intensity
becomes relativistic, as shown in Fig. 1(c). Therefore, it is
preferable to study the effects of plasma temperature on SB-
S with non-relativistic laser amplitudes. We take normalized
laser amplitude a0 = 0.1 and electron density ne0 = 0.36nc,
without a density ramp in front of the plasma. For a compar-
ative study we use the electron temperatures Te0 = 1 keV and
100 keV, and take mi/Zme = 1836. With the given light
intensity and simulation time, plasma expansion is not very
strong. So the left vacuum occupies 30λ, and the right vacu-
um occupies 120λ. Other parameters are the same as the SRS
simulation.

From Fig. 5(a), one can see the amplitude of the backscat-
tered light increases quickly and saturates in a short inter-
val of time at Te0 = 1 keV. Meanwhile for Te0 = 100 keV,
the backscattered light grows very slowly. From Fig. 5(b),
one may note that the amplitude of the backscattered light is
comparatively larger than the amplitude at 100 keV. After lin-
ear growth of SBS, nonlinear process develops, during which
ions trapped in ion acoustic wave make nonlinear frequency
shift.29 Thus we see peaks at smaller values of ωs in Fig.
5(b). The maximum ion acoustic wave frequency obtained
is ω = 0.098, which is well satisfied with the numerical so-
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FIG. 5. (color online) PIC simulations of SBS, where the incident
laser amplitude and plasma electron density are given by a0 = 0.1
and ne0 = 0.36nc and the plasma electron temperature is Te0 = 1
keV or Te0 = 100 keV. (a) Backscattered light in time domain. (b)
Frequency spectra of the scattered light. (c) is the ion density dis-
tributions in longitudinal direction respectively at 500τ . (d) Fourier
transform of the ion density distribution in (c).

lution. We now consider the spectrum of the backscattered
light at Te0 = 100 keV in Fig. 5(b). Its spectrum has a very
small peak at ω = 0.09. This means that at Te0 = 100 keV
SBS is suppressed significantly. The frequency of backscat-
tering light is approximated to be 0.085 given by our theory.
The density profile in Fig. 5(c) shows that at Te0 = 1 keV,
much stronger ion density fluctuations have been developed.
Fourier transform of the ion density distribution shown in Fig.
5(d) indicates that when Te0 = 1 keV, the instability occurs at
k ≃ 1.6. Meanwhile, the wave vector k shifts to 1.69 when
Te0 = 100 keV. This shift in k agrees well with the expres-
sion k = 2k0 − 2csω0/c

2, estimated in Sec. IIB. From the
above discussions it is clear that, both the instability region
and maximum value are suppressed at high electron tempera-
ture as stated in Sec. IIB. This shows that our theory is valid
at non-relativistic plasma temperatures.

When laser intensity a0 >∼ 0.3, and plasma density ne0 >
0.25nc, kinetic electrostatic electron nonlinear waves30 or s-
timulated electron acoustic wave27 will develop. These non-
linear processes will make it hard to observe Brillouin scat-
tering in the backward direction. To study SBS in relativistic
intensity region, we set a0 = 1, ne0 = 0.9nc, where strong
SBS can be developed at low electron temperature. One has
to diagnose the ion density to study SBS. As shown in Fig.
6(a), when Te0 = 1 keV the ion density have strong fluctua-
tions in the longitudinal direction, which indicates the onset
of intense SBS process. On the contrary, the ion density al-
most has no fluctuation when Te0 = 1 MeV. This means SBS
has been reduced under this condition. From Fig. 6(b), it is
clear that when Te0 = 1 keV the instability k ranges from 0 to
10, and stronger fluctuations occur for k < 1. While at Te0
= 1 MeV, the instability strength is very low in comparison

FIG. 6. (color online) PIC simulations of SBS, where the incident
laser amplitude and plasma electron density are a0 = 1 and ne0 =
0.9nc and the plasma electron temperature is Te0 = 1 keV or Te0

= 1 MeV. (a) is the ion density distributions at 470τ . (b) Fourier
transform of the ion density distribution in (a).

to the temperature Te0 = 1 keV. These results agree with Fig.
2(b).

IV. SUMMARY

The effects of relativistic plasma electron temperature on
SRS and SBS instabilities have been investigated theoretically
and numerically. The dispersion relations for these instabili-
ties are obtained using the relativistic thermal electron fluid
model, which uses the kinetic theory and assumes the Jüttner-
Synge distribution for relativistic hot electrons. The maxi-
mum growth rates for these instabilities are obtained, which
recover the cold plasma case at temperature close to zero. Ac-
cording to the dispersion relations, it is found that the relativis-
tic electron temperature can reduce the instability region and
the growth rates for both SRS and SBS instabilities. More-
over, it decreases the frequency of backscattering light.

To validate the theoretical analysis we have carried out 1D-
PIC simulations. Both theoretical analysis and PIC simula-
tions showed that the instabilities can be suppressed signifi-
cantly by hot electron temperatures. When the initial electron
temperature is small and the intensity of incident laser pulses
is relativistically high, the parametric instabilities can develop
rapidly and the plasma electrons can be heated to relativistic
high temperatures. Afterwards, the parametric instabilities are
significantly suppressed. The PIC simulations are found to be
in close agreement with our theoretical analysis.
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