Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

The influence of the choice of digestion enzyme used to prepare rat hepatocytes on xenobiotic uptake and efflux

Sinclair, J.A. and Henderson, C. and Tettey, J.N.A. and Grant, M.H. (2013) The influence of the choice of digestion enzyme used to prepare rat hepatocytes on xenobiotic uptake and efflux. Toxicology in Vitro, 27 (1). pp. 451-457. ISSN 0887-2333

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Isolated rat hepatocytes are widely used to assess the metabolism and toxicity of xenobiotics. The choice of digestion enzyme used to prepare the cells has been shown previously to influence their metabolic capability. This study investigates the effect of the digestion enzyme (collagenase II, collagenase A/trypsin inhibitor, or collagenase plus dispase) on the uptake of xenobiotics into, and efflux from, hepatocytes. The choice of digestion enzymes used in this study does not affect uptake of either pravastatin (an organic anion probe substrate for Oatp transporter) or metformin (an organic cation probe substrate for Oct transporter). With regard to efflux transporters, hepatocyte differentiation was better maintained when cells were isolated using collagenase II alone.