
 

With an increase in the use of small, modular, resource-limited satellites for Earth orbiting applications, 

the benefit to be had from a model-based architecture that rapidly searches the mission trade-space and 

identifies near-optimal designs is greater than ever. This work presents an architecture that identifies trends 

between conflicting objectives (e.g. lifecycle cost and performance) and decision variables (e.g. orbit altitude 

and inclination) such that informed assessment can be made as to which design/s to take on for further 

analysis.  The models within the architecture exploit analytic methods where possible, in order avoid 

computationally expensive numerical propagation, and achieve rapid convergence. Two mission cases are 

studied; the first is an Earth observation satellite and presents a trade-off between ground sample distance 

and revisit time over a ground target, given altitude as the decision variable. The second is a satellite with a 

generic scientific payload and shows a more involved trade-off, between data return to a ground station and 

cost of the mission, given variations in the orbit altitude, inclination and ground station latitude. Results of 

each case are presented graphically and it is clear that non-intuitive results are captured that would typically 

be missed using traditional, point-design methods, where only discrete scenarios are examined. 
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1. Introduction 

The use of CubeSats for purposes other than education, such as scientific data collection 

[1][2][3], Earth observation (EO) [4][5][6][7] and communication [8][9][10][11] is becoming 

increasingly popular. As a result, the need to maximize performance and minimize cost is also 

increasing as commercial organizations tend toward the use of nano-satellites as a cost effective 

satellite solution. While simulation is commonplace for identifying mission performance, it is 

typically computationally expensive and applied on a case-by-case basis, enabling the analyst to 

develop an understanding of the range of solutions over time. A multitude of cost modeling 
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approaches are widely available, including both bottom up and top down methods, but again are 

generally applied by the analyst manually, rather than integrated into an automated search. Once 

an acceptable mission design is identified during the conceptual/early design phase using this 

approach, design parameters tend to be held fixed throughout the remaining design life-cycle. A 

simple, dedicated method of directly relating cost and performance to key mission design 

parameters could significantly increase mission robustness, as resultant changes could be 

analyzed rapidly and the design modified appropriately. Incorporation of global, multi-objective 

optimization techniques would further benefit the process ensuring near-optimal solutions are 

carried forward. 

Historically, mission design has been conducted by teams of systems engineers and domain 

specialists applying knowledge and experience to identify a feasible solution that will satisfy 

system demands. Whether an optimal, or even near-optimal, solution is found is not necessarily 

known since inter-domain trade studies are typically conducted in isolation due to the complexity 

of the problem at this top level. For traditional, large satellites, this is likely to be the situation for 

the foreseeable future as both the design space and solution space are complex and the 

relationship between the two is not deterministic (a large number of potentially very different 

system designs exist for any particular mission). This demands an iterative, expert-led process, as 

demonstrated successfully by concurrent engineering centers throughout the world. Some effort 

has been applied to exploiting methods in the field of multi-disciplinary design optimization 

[12], but it has seen little deployment into industry. Other point design approaches, such as 

design of experiments in the form of factorial design [13] and Taguchi methods [14] have been 

applied to the mission design problem, however knowledge of much of the solution space 

remains unclear due to the limited number of assessments made using this approach. 

In order to search a larger proportion of the mission solution space and thus identify optimal 

mission designs, whilst still considering large numbers of design (input) variables, the 

computation time for calculation of performance and cost parameters must be reduced. This is a 

promising prospect for CubeSat-type platform because of their limited capability and modular 

design. Inherently, the number of design variables, in particular the number of discrete integer 

variables, is reduced, whilst still maintaining a good approximation of the performance metrics. 



 

Importantly, the general lack of time-periodic orbit properties such as repeat ground tracks
‡
 

allow for the use of long-term averaging methods, which cannot be accurately applied otherwise 

due to the inherent longitude-dependency associated with visibility statistics. This allows for 

rapid assessment of visibility characteristics between satellites and ground stations (GSs), which 

typically demands time consuming numerical propagations and thus rules out the opportunity to 

assess large numbers of mission options.  A shift in the way mission analysis can be conducted 

for resource-limited Earth orbiting systems is presented, highlighting a move away from a mass-

centric view of the space segment [15] towards a multi-attribute, performance-centric view of the 

entire mission. Design solutions that may have been hidden from the designer searching the 

trade-space using expert knowledge and point design tools, may become available as a result, 

and a broader more complete view of the solution space is realized. 

1.1. The Inter-disciplinary Design Problem 

Generally, a space mission comprises multiple disciplines including, but not exclusively, an 

orbit trajectory, space segment (i.e. the satellite), ground segment and launch segment, with a set 

of inputs and requirements driving the design and a set of performance parameters characterizing 

mission success. The complex nature of a space mission means that each discipline is related to 

almost all of the others to a certain degree, such that none can be neglected if one is to truly 

optimize the mission as a whole. The order in which each discipline is solved, thus dictating 

which variables are of a dependent nature, is defined by the causality employed. A completely 

closed form system of equations can be considered acausal, such that any variable could be 

assigned as an input and any other as the unknown target to be solved. This type of system can 

be exploited using parametric analysis tools such as ParaMagic
®
 (for Magic Draw) and Solvea

®
 

(for Enterprise Architecture), and is a powerful approach to conducting sensitivity analysis on a 

complex system. However for it to work successfully, all of the mathematical relationships must 

be in closed form such that they can be solved using symbolic mathematical engines, such as 

Mathematica
®
. The Space Systems Working Group of the International Council on Systems 

Engineering are making developments in this particular field of research specifically on 

CubeSats [3][16]. In the present work, some of the relationships have a specific directionality 
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and require iterative loops or other numerical methods to find a solution. As such, sequential 

programming is used to model the various disciplines, within the Matlab
®
 environment. 

Since each space mission is unique, the model architecture introduced here cannot be 

completely generalized, however a baseline structure can be maintained with modifications of 

the inputs and requirements made for each use case. The general design structure matrix is 

shown in Figure 1, based on the graphical notation pioneered by Lambe and Martins [17]. A set 

of inputs, which includes the mission requirements, feeds each of the mission disciplines, from 

which one or more performance metrics are produced. An optimizer manipulates the inputs to 

the system in order to improve these performance parameters, as defined by the user. Lines 

emanating from the right of the segments along the main diagonal represent outputs which can 

be passed to segments further down the chain, while lines entering the top & bottom represent 

inputs. Depending on the level of fidelity and/or rigidity of the analysis, certain links between 

disciplines may be neglected. For example a specific launch may be pre-defined for the mission 

such that the launch segment block becomes independent from the space and trajectory blocks 

and no link between them is required. 

 

 

Fig. 1.  Design Structure Matrix



 

1.2. Case Studies 

In order to illustrate some of the capabilities and flexibility of the proposed methodology, two case 

studies are analyzed which represent typical CubeSat applications. It should be noted that it is beyond the 

scope of this work to demonstrate complete novel mission solutions, but is instead aiming to introduce a 

design approach. 

1.2.1. Case I: Earth Observation Payload 

Earth observation (EO) is, and promises to be, one of the most widely applied disciplines for CubeSats 

due to the low cost, responsive solution they offer to capturing valuable image data. This case study 

features a mission involving an optical payload with a 10cm focal length, 9cm aperture and 5μm² detector 

pixel size. The objectives are two-fold; minimizing the ground sample distance
4
 (GSD) and minimizing the 

average revisit gap time
5
 over an arbitrary point at the lower latitude of the UK mainland (50°). The 

decision variable is orbit altitude (300km – 800km) and a Sun-synchronous orbit requirement is imposed. 

1.2.2. Case II: Scientific Payload 

The second case study involves a payload that collects scientific data at a constant rate over the mission 

lifetime, with the objectives of maximizing the return of data to the ground and minimizing mission cost. 

Decision variables include orbit altitude (300km – 1000km), orbit inclination (60° - 120°) and GS latitude 

(0° - 89°)
6
. 

2. Methods 

Within this section, the methods used to model each mission discipline are introduced and justified in the 

case of a CubeSat mission architecture. The optimization approach is also introduced. 

2.1. Orbit Trajectory 

The orbit around which a satellite flies generally has a significant impact on performance of the mission. 

It affects such top-level parameters as ground site visibility, eclipse duration, communication link distance 

and mission lifetime and is therefore an ideal candidate for input to the system. Since this work considers 

only long-term averages with respect to orbit trajectory, the position variables (right ascension of ascending 

node and true anomaly) remain undefined. Furthermore, only circular orbits are considered such that 

 
4 Distance between the centers of 2 neighboring pixel areas, on the ground. 

5 Average revisit gap is the long-term average time between sightings of a particular target. 

6 Analysis of only northern hemisphere GS is necessary since visibility of targets in the southern hemisphere is implied by symmetry about the equator. 



 

eccentricity and argument of perigee are also undefined. As such, altitude and inclination are the remaining 

variables, which are used to examine ground station coverage via analytical methods, described in detail in 

section 3.1.2. 

2.2. Space Segment 

The CubeSat is a specific class of Nano-satellite (mass range between 1kg and 10kg), for which an 

internationally recognized standard [18] provides design guidelines, on such elements as geometry, 

materials and mechanical and electrical interfaces. Size of a CubeSat is defined in discrete intervals, built 

up of one or more units (U), including half units, which are 10cm x 10cm x 10cm in form. CubeSats have 

grown in popularity over recent years, in particular within the University and research fields, due in part to 

the abundance of Off-The-Shelf (OTS) components/sub-systems available for the platform, but also 

because of the low cost (often free-of-charge [19]) launch opportunities afforded as a secondary payload. 

The current boom in CubeSat popularity is helping to accelerate development of the available technology 

making commercial application of this platform type more attractive. 

2.3. Launch Segment 

The launch segment of any space mission, CubeSat included, is inherently difficult to generalize since 

many of the elements involved are mission-specific, stochastic in terms of quantities and highly dynamic 

with respect to schedule. Options for CubeSat launches range from fully funded, government-based 

initiatives such as NASA’s Educational Launch of Nano-satellites (ELaNa) program [19] to secondary 

payloads on vehicles such as the Dnepr, which was advertised at $30k per 1U CubeSat (in 2001) [20] and 

$325k for a dedicated 3U CubeSat launch (as of January 2014) through Spaceflight Incorporated [21]. 

Other launches range from $12k per kg (to 310km altitude) with Interorbital Systems [22] to Quantum 

Research International being commissioned by NASA to provide access to low Earth orbit (LEO) with 24 

hours’ notice for no more than $1M [23]. Owing to the complexity and risk associated with incorporating 

CubeSats as secondary payloads, the “piggy-back” approach is falling out of favor with many primary 

payload teams. As a result, the concept of a dedicated nano launch vehicle is gaining an increased amount 

of attention from the space community [23]. Indeed, the NASA Launch Services Enabling eXploration & 

Technology (NEXT) program [24] aims to place three 3U (three unit) CubeSats into a near polar, sun-

synchronous orbit at a cost of $300k per platform. In order to maximize applicability for the future and 

remove dependency on primary payload orbit demands, this study will assume use of a dedicated launch 

vehicle. 



 

2.4. Ground Segment 

A typical CubeSat communicates on one of three frequencies; VHF (130MHz – 150MHz, 1.2kbps), UHF 

(420MHz – 450MHz, 9.6kbps) or S-band (2.2GHz – 2.5GHz, <2Mbps), with X-band systems employed in 

recent operations [4] and receiving significant attention for future application [25][9]. In order to support 

this type of system for relatively low data-rates (<1Mbps), it is possible to locate GSs at bespoke sites 

convenient to the user, such as on top of buildings in cities. High data-rates (<100Mbps, via X-band) are 

possible with larger antennae located at dedicated tracking and command centers. It is considered that 

whilst convenience may drive GS location for low-cost educational CubeSat missions, as applications 

become more complex and capabilities increase, placement/selection of GSs at new locations could mean 

the difference between success and failure of a mission. This is likely to be of particular relevance to 

commercial systems, where the up-stream cost of GS implementation is significantly outweighed by the 

potential financial return. 

2.5. Multi-Objective Global Optimization 

Previous attempts to apply optimization at the space mission level have been successful with single, often 

cost-centric, objectives [12]. However, it is clear that other objectives should be incorporated, which may 

suffer following successful minimization of the cost metric if a truly optimal solution is to be found. 

Successful examples of system-level optimization exist [26], but they do not generally consider 

performance/cost impact on the overall mission, which could reflect non-intuitive, and indeed variable, 

relationships with system design parameters at different mission design points. Owing to the complex 

nature of the problem at hand, with characteristics of a highly discontinuous solution space with many local 

minima, potential for mixed-integer constraints and a large number of input variables, evolutionary 

algorithms are considered necessary. In order to achieve this, a controlled elitist (variant of type 2 non-

dominated sorting genetic algorithm, NSGA-II) Multi-Objective Genetic Algorithm (MOGA) is 

employed
7
. The nature of heuristic approaches in terms of finding only near-optimal solutions is considered 

acceptable in this study, since even a near-optimal solution may present vast improvements over a solution 

obtained through engineering judgment and point design alone. 

A general multi-objective problem can be described as the problem of finding “a vector of decision 

variables ( ) which satisfies constraints and optimizes a vector function whose elements represent the 

objective functions ( )” [27], where 

 
7 The specific algorithm used is the MOGA within the Matlab® global optimization toolbox 
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Objectives will tend to conflict (e.g. performance and cost) such that a range of optimal solutions can 

exist, forming a Pareto set. The dimension of the Pareto set is equal to the number of objective functions for 

which the problem is defined. 

3. Theory & Calculations 

The following sections describe the model architecture in more detail, including the space, launch, 

ground and performance disciplines. 

3.1. Space System Design 

The approach to space system design is summarized by the process described in Figure 2, whereby the 

most suitable CubeSat platform is selected based on compliance with mission requirements and minimum 

cost. This is of course specific to CubeSat applications and would require modification in order to be 

applied successfully to other platform types. 

The platform selection can often be non-trivial, such that a fully laden 2U CubeSat in need of a de-orbit 

device may be more costly than a sparsely packed 3U CubeSat which can decay in an acceptable time 

without such a device. The lowest cost system is selected as the one to take forward in the model. The 

following sections provide further detail into some of the more involved space segment design elements. 

3.1.1. Mass, Volume, Power and Cost 

The mass, volume, power and cost of the platform are calculated as a sum of these parameters for each 

sub-system. Sub-system selection is made based on either mission requirements (e.g. a 3-axis attitude 

determination and control system would be selected should a pointing demand from the 

payload/communication system demand it) or as a function of other dependent variables (i.e. power 

demand and eclipse conditions will drive the battery size), from a database of OTS components, taken from 

various on-line sources [28][29][30]. 



 

 

 

Fig. 2.  Space segment design process (each rectangular block represents a calculation or process) 

3.1.2. Communication Power Demand 

Operation of the communication system is dependent on whether a suitable GS is in view for 

transmission, which is a function of the GS location and orbital parameters. In order to calculate the duty 



 

cycle for this equipment, the view period ratio ( ), defined in [31] is exploited, providing the fraction of 

time a satellite is in view of a GS. For multiple ( ) GSs, the transmission duty cycle (          ) is 
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where   is the availability fraction of     (proportion of time available for communication), taken as 0.9 in 

this work. This approximation assumes no GS mask overlap (i.e. the satellite is never in view of more than 

one GS), a constant orbit period over the lifetime and operation of the communication system every time a 

GS is in view, accounting for the availability fraction ( ), irrespective of eclipse. If transmission during 

eclipse is forbidden, as is often the case due to the significant power demand from such a sub-system, then 

multiplication of this parameter by the fraction of the orbit spent in eclipse would provide a sufficient 

modification. The nominal communication system power demand can therefore be approximated as 
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where           and          are transmit and receive power demands, respectively. 

3.1.3. Battery Sizing 

Battery capacity can be analytically approximated as a function of the power demand during eclipse 

(        ), eclipse duration (        ) (worst case over the lifetime), charging efficiency (       ), depth of 

discharge (   ) and a safety factor accounting for degradation effects over the lifetime (     ) [32] 
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Since eclipse duration is generally variable over the mission lifetime
8
 due to relative motion between the 

orbit plane and the Earth-Sun line, the required capacity should be calculated based on the worst case 

 
8 It is noted that for Sun Synchronous Orbits, the eclipse duration is approximately constant over the lifetime and in such case the eclipse duration should be 

calculated for the true conditions. 



 

(longest eclipse) conditions. The eclipse period can be found as a function of beta angle (  = angle between 

the orbit plane and Earth-Sun vector), and is at a minimum when   is at a minimum. This is illustrated in 

Figure 3and defined in equations (6) and (7) 

 

Fig. 3.  Eclipse scenario for LEO 
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where   is the angular radius of the Earth as seen from the satellite [33] and   is the satellite circular orbit 

period. The battery capacity calculated in equation (5) is the minimum required to satisfy the demands from 

the platform, so the battery device would be a discrete size available that exceeds this. 

3.1.4. Solar Array Selection 

The average effective area of solar arrays projected toward the Sun (           ), required to satisfy 

power demands from sub-systems during the sunlit period (    ) and battery charging (       ), can be 

defined as [33]: 
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where S is the solar flux at the Earth (1366Wm
-2

) [34]
9
,       is the solar cell energy conversion efficiency, 

      is the cell packing efficiency,   is the cell degradation due to radiation and other lifetime effects 

(~2.75%/year [33]) and   is the nominal lifetime (in years). The power required to recharge the battery 

following eclipse is 
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where      is the total efficiency of the path between the solar array and battery (including charge regulator 

efficiency). For a large, traditional satellite, the projected area found using equation (8) can generally be 

directly translated into a solar panel size, assuming some maximum expected angle of incidence given 

active control of array orientation. For small satellites however, this is typically not the case since solar 

array pointing mechanisms are generally not employed. As such, the cell area required to meet 

requirements must be mapped to a total cell area on the satellite, calculated as a function of the average 

solar cell fraction effectively collecting sunlight energy over the lifetime (henceforth referred to as cell 

utility). The drivers behind the utility value are attitude scheme (e.g. a sun tracking satellite would require 

significantly less cell area than a tumbling satellite), solar panel deployment configuration and  -angle. The 

problem is complicated further as the number of deployed solar panels increases, due to a greater effect 

from shading. A study to find the optimal solar panel deployment configuration (to maximize average 

energy collection over the mission lifetime) has been conducted [35], which shows an average cell utility of 

more than 27% is possible for a system with between 2 and 4 deployed arrays in a Sun-variable attitude 

scheme (i.e. the Sun position unit-vector in the satellite body frame,  ̂   
    

, is time-variant). This utility is 

seen to reach a low of ~15% at specific beta angles for systems with only body-mounted cells, which will 

therefore be used as a conservative estimate in this work. For constant relative Sun-position attitude 

schemes (Sun pointing), 95% of the total area shall be assumed effective.to account for some error in 

attitude pointing. 

 

 
9 Solar flux values as low as 1353Wm-² are applied in some power system design [43], to provide conservative estimates, however safety margins applied to 

system mass, volume and cost at a higher level are considered sufficient here. 
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Depending on the CubeSat volume in question (   = 1U, 2U, 3U…etc.), conversion of the required solar 

array area (            ) into a discrete set of body mounted and deployed arrays will vary. The process is 

generalized in Eq. (11), whereby it is assumed 4 body-mounted arrays are available and 8 deployed arrays 

are available (4 panels with cells on both sides), 
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3.1.5. De-orbit Device Selection 

The requirement to include a de-orbit device is generally difficult to confirm, given large variability of 

atmospheric density with variation in both altitude and time [36], uncertainty in satellite drag coefficient 

and uncertainty in the body’s uncontrolled attitude relative to the incoming flow. However, in order to 

identify general trends, some assumptions are made which allow analytical approximations for the orbit 

decay time to be used. The basic approach is based on the fit of a power curve to the international standard 

atmosphere to get an analytical relationship between density and altitude between 150km and 1000km [37]. 

From this, it is possible to find the decay time (  ) as a function of initial (  ) and final (  ) orbit radii 
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where   is the satellite mass,   is the average cross sectional area projected in the velocity direction,   is 

the Earth gravitational parameter,    is the Earth radius (6371km), and   and   are non-dimensional 

constants from the curve-fit, which take the values of 7.201 and 107 respectively. 

Given a beginning of life orbit radius and a minimum orbit radius considered acceptable for successful 

operations, the natural decay time can be calculated. The lifetime of the mission is then the minimum of the 

natural decay time and the nominal lifetime. A minimum acceptable mission lifetime can also be imposed 



 

to avoid unacceptably low altitude solutions being considered in the optimization. A penalty function is 

applied in this case to remove the solution from the Pareto set. 

Compliance with the Inter-Agency Space Debris Coordination Committee 25 year de-orbit time 

recommendation [38] can then be assessed and if non-compliant, a de-orbit device can be added to the 

system. In this work, the Aerodynamic End Of Life De-Orbit System (AEOLDOS) is used as the baseline 

de-orbit device, which can have either a 1.5m² or 3.0m² cross-sectional area when deployed, depending on 

system demand. A drag coefficient of 2.1 is used throughout this work for all configurations, but an 

alternative could be easily applied if better knowledge of the system’s aerodynamic behavior exists. 

3.2. Launch Segment 

As discussed in section 2.3, this study assumes a dedicated launch vehicle is used to inject platforms into 

LEO. The cost of launching a CubeSat into a dedicated LEO is $325k, which shall be used as the baseline 

cost (       ) throughout this study. 

3.3. Ground Segment 

Historically, communication with CubeSats has been achieved via a mixture of pre-existing GSs and 

bespoke, custom built GSs. For the former, only an operational cost exists which is dependent on the 

lifetime of the satellite, whereas the latter requires a set-up cost also. A VHF/UHF or S-band only system 

will incur an upfront cost of $35k, while a VHF/UHF/S-band system will be $45k [39]. Furthermore, due to 

remoteness of the upper latitude, it is assumed that the setup cost of a GS will increase by $1k per degree of 

latitude greater than 60° north such that a VHF/UHF/S-band station at 80° will cost $65k. Operational costs 

of using a GS are generally calculated on a mission-by-mission basis, depending on the type of customer, 

level of involvement from the GS team, whether day and/or night contact is required and communication 

frequency band. For the purposes of this study, a cost per hour ( ̇     ) shall be applied to each GS such 

that orbit-GS combinations with high levels of visibility, and hence greater contact performance, shall 

experience greater operational costs. Furthermore, it is assumed that remote control of ground station 

equipment is possible, enabling latitude-independence of the cost-per-hour metric. The GS operations cost 

can therefore be formulated as 
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where     is the visibility view period ratio over a particular GS and   is the mission lifetime. The total 

cost of the ground segment, comprising a total of   GSs, is 
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A safety factor of 1.2 shall be applied in this study, but can be modified depending on confidence levels. 

3.4. Measure of Performance 

The measure of performance used to quantify success of a mission is highly dependent on the mission 

objectives, and as such cannot be generalized. For the majority of CubeSat systems, the return of 

scientific/observation data to a user on the ground could be considered a common metric, however area 

coverage must also be considered for a surveillance satellite, or perhaps lifetime for a system being 

deployed gradually over the long term. Mission cost is always likely to be a major factor of whether a 

mission is feasible and successful, especially for commercial applications, however for a relatively narrow 

design-space cost may not vary significantly and as such may be ignored as part of the trade study. 

For the first mission case (EO payload), target revisit rate and GSD will be considered, while for the 

second mission case (scientific payload), rate of data returned to ground and mission cost will be the 

measures of performance. 

3.4.1. Mission Cost 

Costing of a space mission is a very complex problem with many variables including recurring and non-

recurring costs, dependency on design complexity, lifetime effects on operations cost and economic 

phenomena such as inflation. Because of this the cost metric defined here is not intended as a final price 

estimate, but as a measure with which to compare the relative cost of different designs. The total mission 

cost is calculated as 
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3.4.2. Data Return Rate 

Data return rate ( ̇   ) of a system can be defined as the sum of the average daily data return of useful 

payload data. This can be further defined as the minimum limit of either the data collection or data 

download, as 
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where  ̇ is the data transfer rate from each sub-system, of which there are   that perform upload (e.g. 

multiple payloads each collecting information) and   that perform download (e.g. VHF/UHF and S-band 

transmitters) to   GSs,   represents the fraction of time in view of a target over which payload data can be 

collected/transferred, applicable to the sub-system,   or  , and   is the average proportion of total time that 

the GS/target is available for use by the satellite. Effectively, Eq. (16) states that if the maximum possible 

data collection exceeds the maximum possible data transmission, the return rate equates to the transmission 

rate, and vice versa. This linear approach to data return assumes that while a target is visible to an agent (be 

it a payload target or a GS), data transfer is conducted at a constant rate, which is considered acceptable for 

the current state of CubeSat hardware. While variable rate communication systems are receiving attention, 

and are even being implemented on some platforms [3], they are not standard practice and the proposed 

approach is thus considered representative. 

For this study, given the generally accepted low downlink data-rate potential from a CubeSat and the 

relatively short, infrequent pass duration with GSs, it shall be assumed that download of data is always the 

limit of the system (i.e. upload via the payload always exceeds download potential) such that Eq. (16) can 

be simplified to 
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Typically, the time in which a satellite is in view of a target on the ground is found numerically, via long 

term orbit propagation and assessing change in a visibility function over the simulation timespan. This can 

be computationally expensive, especially for the case of multiple satellites and multiple GSs, which 



 

impedes the rapid focus of this methodology. The combination of two analytical methods resolves this 

issue for near-circular, non-repeating ground-track orbits, assumptions which are considered acceptable for 

the majority of CubeSat applications. The first of these methods is a solution to the long-term visibility 

ratio, presented by Lo [31]. A definite integral was presented that when solved provides the view period 

ratio (fraction of time in which a GS is visible to a satellite), given the latitude of the GS, orbit inclination, 

orbit altitude and minimum visibility elevation above the horizon. This work has been extended by both Lo 

[40] and Ming and Shi-Jie [41] to include visibility statistics from elliptical orbits, however this is 

considered beyond the scope of the current work. The second enabling method was pioneered by Burk [42], 

which provides a closed-form expression for GS visibility frequency per day, or passes per day (PPD). This 

is again a function of GS latitude, inclination, altitude and minimum elevation. 

In isolation, the methods presented by Lo and Burk provide interesting results, but offer significantly 

more information when combined. In particular, neither provides an approximation of the average pass 

duration, which is important to the communication characteristics of a satellite to a GS. Through 

combination of the methods, it is possible to obtain an estimate of total time in view of a GS, average pass 

duration and average visibility frequency. Perhaps a medium altitude satellite may be in view of a ground 

site for an average of 1 hour per day, but achieve all of this in a single pass, whereas a satellite in LEO with 

the same total daily pass duration might accumulate this contact time over 5 or 6 shorter passes. Finally, 

accounting for time at the start and end of a pass required for operations other than payload data transfer, 

(       ), it is possible to calculate the useful contact time 

 

    
           
     

  (18) 

 

A system characterized by many short passes over the GSs is therefore more susceptible to losses from 

initialization and close-out routines than one with fewer, longer passes. 

3.4.3. Ground Sample Distance 

GSD, or image resolution, is a measure commonly applied to EO payloads as it defines the effectiveness 

of the system to identify objects on the ground. GSD is a function of the distance from the target ( ), which 

for a nadir-pointing payload will be the orbit altitude, the pixel size (  ) and the focal length ( ), 

 

    
   

 
  (19) 



 

 

It is recognized that a theoretical physical limit applies to the GSD in the form of the Rayleigh criterion, 

which represents the minimum acceptable pixel size (  ) to achieve the resolution specified. It is a function 

of focal length, wavelength
10

 (       ) and aperture ( ), which for a standard optics arrangement on 

board a CubeSat is considered ≤ 9cm [7], 

 

       
  

 
  (20) 

 

Should the pixel size be less than this limit, a penalty function shall be applied to the GSD, effectively 

moving the solution far away from the Pareto set. 

3.4.4. Revisit Gap 

The average amount of time between two sightings of a particular target on the ground can be 

approximated using the PPD method introduced earlier for calculating data return rate (§3.4.2). Whilst in 

reality, the revisit rate may vary between one orbit to many weeks, which can only be found accurately 

with numerical methods, the long term average gap length (    ), in hours, can be approximated as 

  

     
  

   
  (21) 

 

Since the minimum elevation angle considered acceptable for a visible imaging payload is relatively high 

(~60°) compared to typical communication elevation angles (0°-10°), the pass durations will be short in 

LEO (on the order of seconds) such that this can be neglected from the calculation. 

3.5. Problem Formulation 

3.5.1. Case I: Earth Observation Payload 

The first mission case can be defined using the two objectives for ground sample distance (   ) and 

revisit time (    ), where the aim is to 

 
10 Upper bound of visible spectrum selected for wavelength 



 

   {   }  

   {    }  

 

subject to the decision variables in Table 1. 

 

Table 1. Case 1: Decision variables 

 

Since the orbit is restricted to a Sun-synchronous type, inclination is a function of altitude so need not be 

included as a decision variable. 

3.5.2. Case II: Scientific Payload 

The second mission case is defined by the objectives for mission cost (        ) and data return rate 

( ̇   ), where the aim is to 

 

    {        }  

    { ̇   }  

 

subject to the decision variables in Table 2. 

 

Table 2. Case II: Decision variables 

 

 

Variable Lower Bound Upper Bound 

 

Orbit altitude 

 

300km 

 

800km 

   

 

 

Variable Lower Bound Upper Bound 

 

Orbit altitude 

 

 

300km 

 

800km 

Inclination 

 

60° 120° 

Ground Station Latitude 0° 89° 

   

 



 

4. Results 

4.1. Case I: EO Payload 

As expected, the result for the trade between ground sample distance and revisit time is trivial; owing to 

the fact that only one decision variable (altitude) was applied. The solution space is therefore a single line, 

which could be deduced analytically, although calculating revisit time is somewhat involved. Projection of 

the solution space (also the Pareto set) onto each coordinate plane highlights the general trend relating the 

altitude to the objectives. This result verifies the model architecture and shows its usefulness at conducting 

trade studies via a basic example. 

Using the model-based architecture described in this work has additional benefits over identifying the 

trends shown in Figure 4, as it defines a baseline system design for each point in the solution space (e.g. 

which subsystems are required, system mass, volume, power and cost and ground network properties etc.). 

Development of the models through the life-cycle, as information becomes available and experience grows, 

would allow additional parameters to be calculated, which can be carried through for additional analysis on 

a sub-set of near-optimal missions. This further analysis could be detailed behavioral simulation, operation 

scheduling or sensitivity analysis, for example. 

 

Fig. 4.  Solution space - GSD (m) vs. revisit time (hours) vs. altitude (km) 

Pareto Set 



 

4.2. Case II: Scientific Payload 

Whilst the previous case study presented a trivial result, most applications involve significantly more 

complexity, thus removing them from the ability of traditional trade-off approach. This second example 

presents such a case, which would typically have been approached using a point-design method, potentially 

failing to identify even near-optimal solutions. The results for the second mission case are shown, 

comparing the two objectives functions and each of the three decision variables in turn (Figures 5, 6 & 7). 

Again, the Pareto set data is projected onto each of the coordinate planes for clarity of the relationships 

between each combination of parameters. 

 

 

Fig. 5.  Solution space - data return (Gb/day) vs. cost ($k) vs. altitude (km) 

 

Pareto Set 



 

 

Fig. 6.  Solution space - data return (Gb/day) vs. cost ($k) vs. inclination (°) 

 

 

Fig. 7.  Solution space - data return (Gb/day) vs. cost ($k) vs. GS latitude (°) 

It is clear that there are no continuous trends which might have been immediately obvious to a system 

designer, highlighting perhaps the most important feature of this work. Two major altitude regions are 

indicated as optimal, the lower just below 600km and the higher around 740km, the step changes resulting 

from the moments immediately preceding a discrete change in platform characteristic; either from 2U to 



 

3U, or from a bus without a de-orbit device to a bus with one. For the 600km altitude set, inclination varies 

from 110° to 70° and remains near-polar with an increase in altitude. Of course, selecting one or more 

points from the Pareto set to carry through for further analysis requires expert judgment, but the general 

relationships between primary mission drivers are evident in the results. 

These results were obtained in 10 minutes on a personal workstation with an Intel i7 quad-core 2.2GHz 

processor, with a GA population of 500 and solution convergence after 102 generations (i.e 51,000 

iterations of the model architecture). 

5. Conclusions 

This work presents a rapid, model-based approach to the inter-disciplinary design of a CubeSat mission, 

through exploitation of analytical relationships at the inter- and intra-mission levels. Global multi-objective 

optimization, in the form of a controlled elitist genetic algorithm, is applied to the architecture and is shown 

to find a Pareto set of near-optimal solutions from an arbitrary, user defined design space. The method is 

shown to be applicable to both trivial and non-trivial design problems, the latter illustrating a potential to 

identify missions typically out of view when using a point-design approach. 

The assumption of there being no time-periodic orbit properties present, which is considered typical for 

most CubeSat applications, enables reliance on computationally costly numerical orbit propagation to be 

removed. This allows rapid, long-term visibility assessments to be made in fractions of a second (as 

opposed to minutes that is considered acceptable using numerical approaches), enabling many thousands of 

analysis iterations of the mission design space in the time typically expected for just one. 

Results from two case studies are presented; in the first, optimal solutions from a trade-off between 

ground sample distance and revisit rate are shown, over a range of orbit altitude. In the second, it was 

shown that non-intuitive, near optimal CubeSat mission design solutions could be identified for maximum 

data return rate and minimum mission life-cycle cost, for a scientific payload on board a CubeSat. 
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