Optimising 405 nm hins-light technology for patient safe decontamination during arthroplasty surgery

Praveen Ramakrishnan^{1, 2}, Michelle Maclean², Scott MacGregor², John Anderson², M. Helen Grant^{1*} ¹ Department of Biomedical Engineering, University of Strathclyde, Glasgow, Scotland, UK² The Robertson Trust Laboratory for Electronic Sterilisation Technologies, University of Strathclyde,

Glasgow, Scotland, UK

p.ramakrishnan@strath.ac.uk

INTRODUCTION:

Infection rates following orthopaedic arthroplasty surgery are as high as 4%, while the infection rates are even higher after revision surgery ¹. The duration of routine arthroplasty surgeries is typically between 1 and 2 hours. 405nm High-Intensity Narrow-Spectrum Light (HINS-light) has bactericidal activity against Hospital Acquired Infection (HAI) related bacterial pathogens including MRSA ² and hence may aid in reducing the incidence of infections that arise from environmental contamination during arthroplasty surgery.

METHODS:

Immortalised rat osteoblast (OST 5) cells were exposed to 405 nm light at an irradiance of $5mW/cm^2$ in Dulbecco's Phosphate Buffered Saline (DPBS) at different dose rates (18, 27, 36 and $45J/cm^2$) at 37°C and 5% CO₂. Unexposed controls were treated in the same way. After 48 hours post treatment, cell viability (MTT assay), cell function (ALP assay)and cell proliferation rate (BrdU assay) were measured. Live/Dead cell staining was carried out using Acridine Orange/ Propidium Iodide (AO/PI) dyes after 48 hours post light treatment. Statistical analysis was performed using unpaired Student t-test and differences considered significant when p<0.05.

RESULTS:

After 48 hours post light treatment, no significant difference was observed between the unexposed and 405 nm treated samples for up to a dose rate of $36J/cm^2$ in cell viability, function and proliferation rate (fig 1.a). More apoptotic and dead cells were observed for the $45J/cm^2$ exposed samples compared to the $36J/cm^2$ exposed samples (fig. 1.b).

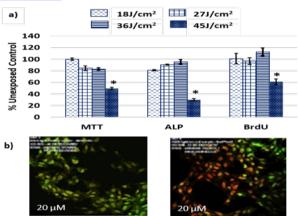


Fig 1. (a) Effect of 405 nm light treatment at $5mW/cm^2$ on OST 5 cell response parameters after 48 hours incubation, (b) AO/PI staining.

Left $- 36J/cm^2$ and Right $- 45J/cm^2$ of 405 nm light treatment after 48 hours incubation. AO (live - green, apoptotic- orange), PI (dead -red).

DISCUSSION & CONCLUSIONS:

From the quantitative and qualitative studies, it is found that the cells were healthy for up to a dose rate of $36J/cm^2$ (5mW/cm² for 2 hours) whilst cell death became evident with doses of $45J/cm^2$.

These results suggest that exposure to a dose of $36J/cm^2$ may be suitable for use for continuous decontamination during orthopaedic surgery whilst being safe for tissue exposure.

REFERENCES:

1. H. Hamilton, J. Jamieson (2008), *Canadian Journal of Surgery*. 51(2): 111-117.

2. M. Maclean et. al. (2009), *Applied and Environmental Microbiology* 75(7),1932–1937.

ACKNOWLEDGMENTS:

P R is supported by a DTC studentship in Medical Devices from the EPSRC.

