Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Quantification of biliary excretion, sinusoidal excretion and diffusion of 5(6)-carboxy-2',-7'-dichlorofluorescein (CDF) in hepatocytes isolated from Sprague Dawley, Wistar and Mrp2 (TR-) deficient rats

Ellis, L.C.J. and Grant, M.H. and Hawksworth, G.M. and Weaver, R.J. (2014) Quantification of biliary excretion, sinusoidal excretion and diffusion of 5(6)-carboxy-2',-7'-dichlorofluorescein (CDF) in hepatocytes isolated from Sprague Dawley, Wistar and Mrp2 (TR-) deficient rats. Toxicology in Vitro, 28 (6). 1165–1175. ISSN 0887-2333

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Hepatic efflux of drug candidates is an important issue in pre-clinical drug development. Here we utilise a method which quantifies and distinguishes efflux of drugs at the canalicular and sinusoidal membranes in rat hepatocyte cultures. Bi-phasic kinetics of transport of 5(6)-carboxydichlorofluorescein (CDF) at the canalicular membrane was demonstrated in Sprague Dawley (SD) and Wistar (W) rat hepatocytes. The high affinity component (Km = 3.2 ± 0.8 μM (SD), 9.0 ± 3.1 μM (W)) was attributed to Mrp2-mediated transport, the low affinity component (Km = 192.1 ± 291.5 μM (SD), 69.2 ± 36.2 μM (W)) may be attributed to transport involving a separate Mrp2 binding site. Data from membranes (Hill coefficient (h) = 2.0 ± 0.5) and vesicles (h = 1.6 ± 0.2) expressing Mrp2 and from SD (h = 1.6 ± 0.4) and Wistar (h = 4.0 ± 0.6) hepatocytes suggests transport involves more than one binding site. In TR− hepatocytes, CDF efflux was predominantly over the sinusoidal membrane (Km = 100.7 ± 36.0 μM), consistent with low abcc2 (Mrp2) expression and compensatory increase in abcc3 (Mrp3) expression. This report shows the potential of using this in vitro method to model changes in biliary excretion due to alterations in transporter expression.