Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Toxicity of cobalt-chromium nanoparticles released from a resurfacing hip implant and cobalt ions on primary human lymphocytes in vitro

Posada, Olga M. and Tate, R. J. and Grant, M. H. (2015) Toxicity of cobalt-chromium nanoparticles released from a resurfacing hip implant and cobalt ions on primary human lymphocytes in vitro. Journal of Applied Toxicology, 35 (6). pp. 614-622. ISSN 0260-437X

[img] PDF (Posada-etal-JAT-2014-Toxicity-cobalt-chromium-nanoparticles-released- from-a resurfacing-hip-implant)
Posada_etal_JAT_2014_Toxicity_cobalt_chromium_nanoparticles_released_from_a_resurfacing_hip_implant.pdf - Accepted Author Manuscript

Download (602kB)


Adverse tissue responses to prostheses wear particles and released ions are important contributors to hip implant failure. In implant-related adverse reactions T-lymphocytes play a prominent role in sustaining the chronic inflammatory response. To further understand the involvement of lymphocytes in metal-on-metal (MoM) implant failure, primary human lymphocytes were isolated and treated with CoCr wear debris and Co ions, individually, and in combination, for 24, 48, and 120h. There was a significant increase in cell number where debris was present, as measured by the Neutral Red assay. Interleukin 6 (IL-6), interferon γ (IFNγ), and tumour necrosis factor α (TNFα) secretion levels significantly decreased in the presence of metal particles, as measured by ELISA. Interleukin 2 (IL-2) secretion levels were significantly decreased by both debris and Co ions. Flow cytometry analysis showed that the metal nanoparticles induced a significant increase in apoptosis after 48h exposure. This investigation showed that prolonged exposure (120h) to metal debris induces lymphocyte proliferation, suggesting that activation of resting lymphocytes may have occurred. Although cytokine production was affected mainly by metal debris, cobalt toxicity may also modulate IL-2 secretion, and even Co ion concentrations below the MHRA guideline levels (7ppb) may contribute to the impairment of immune regulation in vivo in patients with MoM implants.