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Abstract

In this paper, we are concerned with neutral stochastic functional differen-
tial equations driven by pure jumps (NSFDEwPJs). We prove the existence
and uniqueness of the solution to NSFDEwPJs whose coefficients satisfying
the Local Lipschitz condition. In addition, we establish the p-th exponen-
tial estimations and almost surely asymptotic estimations of the solution for
NSFDEwJs.
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1. Introduction

Stochastic delay differential equations (SDDEs) have come to play an im-
portant role in many branches of science and industry. Such models have
been used with great success in a variety of application areas, including
biology, epidemiology, mechanics, economics and finance. In the past few
decades, qualitative theory of SDDEs have been studied intensively by many
scholars. Here, we refer to S.E.A.Mohammed [1], X.Mao [2-5,9], E.Buckwar
[6], U.Kuchler [7], Y.Hu [8], D.Xu [10], F.Wu [11], J.Appleby [12], I.Gyongy
[13] and references therein. Recently, motivated by the theory of aeroelastic-
ity, a class of neutral stochastic equations has also received a great deal of
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attention and much work has been done on neutral stochastic equations. For
example, conditions of the existence and stability of the analytical solution
are given in [14-20]. Various efficient computational methods are obtained
and their convergence and stability have been studied in [21-25].

However, all equations of the aboved mentioned works are driven by
white noise perturbations with continuous initial data and white noise per-
turbations are not always appropriate to interpret real datas in a reasonable
way. In real phenomena, the state of neutral stochastic delay equations may
be perturbed by abrupt pulses or extreme events. A more natural mathe-
matical framework for these phenomena has been taken into account other
than purely Brownian perturbations. In particular, we incorporate the Levy
perturbations with jumps into neutral stochastic delay equations to model
abrupt changes.

In this paper, we study the following neutral stochastic functional differ-
ential equations with pure jumps (NSFDEwPJs)

d[x(t)−D(xt)] = f(xt, t)dt+

∫
U

h(xt, u)Np̄(dt, du), t0 ≤ t ≤ T. (1)

To the best of our knowledge, there are no literatures concerned with the ex-
istence and asymptotic estimations of the solution to NSFDEwPJs (1). On
the one hand, we prove that equation (1) has a unique solution in the sense of
LP norm. We don’t use the fixed point Theorem. Instead, we get the solution
of equation (1) via successive approximations. On the other hand, we study
the p-th exponential estimations and almost surely asymptotic estimations
of the solution to equation (1). By using the Itô formula, Taylor formula
and the Burkholder Davis inequality, we have that the p-th moment of the
solution will grow at most exponentially with exponent M and show that
the exponential estimations implies almost surely asymptotic estimations.
Although the way of analysis follows the ideas in [2], however, those results
on the existence and uniqueness of the solution in [2] can not be extended to
the jumps case naturally. Unlike the Brown process whose almost all sam-
ple paths are continuous, the Poisson random measure Np̄(dt, du) is a jump
process and has the sample paths which are right-continuous and have left
limits. Therefore, there is a great difference between the stochastic integral
with respect to the Brown process and the one with respect to the Poisson
random measure. It should be pointed out that the proof for NSFDEwPJs
is certainly not a straightforward generalization of that for NSFDEs without
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jumps and some new techniques are developed to cope with the difficulties
due to the Poisson random measures.

The rest of the paper is organized as follows. In Section 2, we introduce
some notations and hypotheses concerning equation (1); In Section 3, the
existence and uniqueness of the solution to equation (1) are investigated;
In Section 4, we prove the p-th moment of the solution will grow at most
exponentially with exponent M and show that the exponential estimations
implies the almost surely asymptotic estimations.

2. Preliminaries

Let (Ω,F , P ) be a complete probability space equipped with some filtra-
tion (Ft)t≥t0 satisfying the usual conditions, (i.e. it is right continuous and
(Ft0) contains all P -null sets). Let τ > 0, and D([−τ, 0];Rn) denote the fam-
ily of all right-continuous functions with left-hand limits φ from [−τ, 0] → Rn.
The space D([−τ, 0];Rn) is assumed to be equipped with the norm ||φ|| =
sup

−τ≤t≤0
|φ(t)| and |x| =

√
x⊤x for any x ∈ Rn. If A is a vector or matrix,

its trace norm is denoted by |A| =
√
trace(A⊤A), while its operator norm is

denoted by ||A|| = sup{|Ax| : |x| = 1}. Db
F0
([−τ, 0];Rn) denotes the family

of all almost surely bounded, F0-measurable, D([−τ, 0];Rn) valued random
variable ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. Let t0 ≥ 0, p ≥ 2, Lp

Ft0
([−τ, 0];Rn) de-

note the family of all Ft0 measurable, D([−τ, 0];Rn)-valued random variables
φ = {φ(θ) : −τ ≤ θ ≤ 0} such that E sup

−τ≤θ≤0
|φ(θ)|p <∞.

Let (U,B(U)) be a measurable space and π(du) a σ- finite measure on it.
Let {p̄ = p̄(t), t ≥ t0} be a stationary Ft-Poisson point process on U with a
characteristic measure π. Then, for A ∈ B(U − {0}), here 0 ∈ the closure of
A, the Poisson counting measure Np̄ is defined by

Np̄((t0, t]× A) := ♯{t0 < s ≤ t, p̄(s) ∈ A} =
∑

t0<s≤t

IA(p̄(s)),

where ♯ denotes the cardinality of a set. For simplicity, we denote: Np̄(t, A) :=
Np̄((t0, t] × A). It follows from [26] that there exists a σ- finite measure π
satisfying

E[Np̄(t, A)] = π(A)t, P (Np̄(t, A) = n) =
e(−tπ(A))(π(A)t)n

n!
.
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This measure π is called the Levy measure. Then, the measure Ñp̄ is defined
by

Ñp̄([t0, t], A) := Np̄([t0, t], A)− tπ(A), t > t0.

We refer to N.Ikeda [26] for the details on Poisson point process.
The integral version of equation (1) is given by the equation

x(t)−D(xt) = xt0 −D(xt0) +

∫ t

t0

f(xs, s)ds+

∫ t

t0

∫
U

h(xs, u)Np̄(ds, du),

(2)

where
xt = {x(t+ θ) : −τ ≤ θ ≤ 0}

is regarded as a D([−τ, 0];Rn)-valued stochastic process. f : D([−τ, 0];Rn)×
[t0, T ] → Rn and h : D([−τ, 0];Rn) × U → Rn are both Borel-measurable
functions. The initial condition xt0 is defined by

xt0 = ξ = {ξ(t) : −τ ≤ t ≤ 0} ∈ Lp
Ft0

([−τ, 0];Rn),

that is, ξ is an Ft0-measurable D([−τ, 0];Rn)-valued random variable and
E||ξ||p < ∞. Ñp̄(dt, du) is the compensated Poisson random measure given
by

Ñp̄(dt, du) = Np̄(dt, du)− π(du)dt,

here π(du) is the Levy measure associated to Np̄.
To study the existence and asymptotic estimations of the solution to

equation (1), we consider the following hypotheses.
(H1) Let D(0) = 0 and for all φ, ψ ∈ D([−τ, 0];Rn), there exists a

constant k0 ∈ (0, 1) such that

|D(φ)−D(ψ)| ≤ k0||φ− ψ||. (3)

(H2) For all φ, ψ ∈ D([−τ, 0];Rn), t ∈ [t0, T ] and u ∈ U , there exist two
positive constants k and L0 such that

|f(φ, t)− f(ψ, t)|2 ∨
∫
U

|h(φ, u)− h(ψ, u)|2π(du) ≤ k||φ− ψ||2. (4)

|f(0, t)|2 ∨ |h(0, u)|2 ≤ L0. (5)
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(H3) For all φ, ψ ∈ D([−τ, 0];Rn), p ≥ 2 and u ∈ U , there exists a
positive constant L such that

|h(φ, u)− h(ψ, u)|p ≤ L||φ− ψ||p|u|p, (6)

where π(U) <∞ and
∫
U
|u|pdu <∞.

Clearly, (H2) and (H3) implies the linear growth condition

|f(φ, t)|2 ∨
∫
U

|h(φ, u)|2π(du) ≤ L1(1 + ||φ||2), (7)

and ∫
U

|h(φ, u)|pπ(du) ≤ L2(1 + ||φ||p), (8)

where L1 and L2 are two positive constants.
In fact, for any φ ∈ D([−τ, 0];Rn) and t ∈ [t0, T ], it follows from (4) and

(5) that

|f(φ, t)|2 ≤ 2[|f(φ, t)− f(0, t)|2 + |f(0, t)|2]
≤ 2(k||φ||2 + L0) ≤ L1(1 + ||φ||2).

and∫
U

|h(φ, u)|2π(du) ≤ 2[

∫
U

|h(φ, u)− h(0, u)|2π(du) +
∫
U

|h(0, u)|2π(du)]

≤ 2(k||φ||2 + 2L0π(U)) ≤ L1(1 + ||φ||2).

where L1 = max{2k, 2L0, 2L0π(U)}. Similarly, for any φ ∈ D([−τ, 0];Rn)
and t ∈ [t0, T ], it follows from (5) and (6) that∫
U

|h(φ, u)|pπ(du) ≤ 2p−1

∫
U

(|h(φ, u)− h(0, u)|p + |h(0, u)|p)π(du)

≤ 2p−1

∫
U

|u|pduk1||φ||p + 2p−1L
p
2
0 π(U) ≤ L2(1 + ||φ||p),

where L2 = max{2p−1
∫
U
|u|pduk1, 2p−1L

p
2
0 π(U)}. Hence, the linear growth

conditions (7) and (8) are satisfied.
Now we present the definition of the solution to equation (1).

5



Definition 2.1 A right continuous with left limits process x = {x(t), t ∈
[t0, T ]} (t0 < T <∞) is called a solution of equation (1) if

(1) x(t) is Ft-adapted and x = {x(t), t ∈ [t0, T ]} is Rn-valued;

(2)
∫ T

t0
|x(t)|2ds <∞, a.s.;

(3) x(t) = ξ and, for every t0 ≤ t ≤ T ,

x(t)−D(xt) = xt0 −D(xt0) +

∫ t

t0

f(xs, s)ds+

∫ t

t0

∫
U

h(xs, u)Np̄(ds, du) a.s.

A solution x(t) is said to be unique if any other solution y(t) is indistin-
guishable from it, that is,

P{x(t) = y(t), t ∈ [t0, T ]} = 1.

3. The existence and uniqueness theorem

In this section, we establish the existence and uniqueness of the solution to
equation (1) under the Lipschitz condition and the local Lipschitz condition.

Define x0t0 = ξ and x0(t) = ξ(0) for t ∈ [t0, T ]. Let xnt0 = ξ, n = 1, 2, · · ·
and define the sequence of successive approximations to equation (1)

xn(t)−D(xnt ) = ξ(0)−D(ξ) +

∫ t

t0

f(xn−1
s , s)ds

+

∫ t

t0

∫
U

h(xn−1
s , u)Np̄(ds, du), n ≥ 1. (9)

Theorem 3.1 Let p ≥ 2 and suppose that the coefficients of equation (1)
satisfy conditions (H1)-(H3), then equation (1) has a unique solution x(t) on
[t0, T ] in the sense of Lp-norm.

In order to prove this theorem, let us present three useful lemmas.
Lemma 3.1 [2] Let p ≥ 2, ε > 0 and a, b ∈ R,then

|a+ b|p ≤ [1 + ε
1

p−1 ]p−1(|a|p + |b|p

ε
). (10)

Lemma 3.2 Under conditions (H1)-(H3), there exists a positive constant
c such that

E sup
t0≤t≤T

|xn(t)|p ≤ c, (11)
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where c = (c3+c4(T−t0)E||ξ||p)ec4(T−t0), c3 and c4 are two positive constants
of (25).

Proof: For any ε > 0, it follows from Lemma 3.1 that

|xn(t)|p = |D(xnt ) + xn(t)−D(xnt )|

≤ [1 + ε
1

p−1 ]p−1(|xn(t)−D(xnt )|p +
|D(xnt )|p

ε
). (12)

By (H1), one gets

|xn(t)|p ≤ [1 + ε
1

p−1 ]p−1(|xn(t)−D(xnt )|p +
kp0||xnt ||p

ε
). (13)

Letting ε = [ k0
1−k0

]p−1 and taking the expectation on both sides of (13), we
have

E sup
t0≤s≤t

|xn(s)|p ≤ k0E sup
t0≤s≤t

||xns ||p

+
1

(1− k0)p−1
E sup

t0≤s≤t
|xn(s)−D(xns )|p. (14)

On the other hand, we have

E sup
t0≤s≤t

||xns ||p ≤ E sup
t0−τ≤s≤t

|xn(s)|p

≤ E||ξ||p + E sup
t0≤s≤t

|xn(s)|p. (15)

Combing (14) and (15), we obtain

E sup
t0≤s≤t

|xn(s)|p ≤ k0
1− k0

E||ξ||p + 1

(1− k0)p
E sup

t0≤s≤t
|xn(s)−D(xns )|p.

(16)

By (9) and using the inequality |a+ b+ c|p ≤ 3p−1[|a|p + |b|p + |c|p], we have

E sup
t0≤s≤t

|xn(s)−D(xns )|p

≤ 3p−1(E( sup
t0≤s≤t

|ξ(0)−D(ξ)|p) + E sup
t0≤s≤t

|
∫ s

t0

f(xn−1
σ , σ)dσ|p

+E sup
t0≤s≤t

|
∫ s

t0

∫
U

h(xn−1
σ , u)Np̄(dσ, du)|p)

:= 3p−1

3∑
i=1

Ii. (17)
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Let us estimate the terms introduced above. Letting ε = kp−1
0 , then it follows

from Lemma 3.1 that

I1 ≤ (1 + k0)
pE|||ξ|p. (18)

By using the Hölder inequality and the linear growth condition (7), one gets

I2 ≤ (t− t0)
p−1E

∫ t

t0

|f(xn−1
s , s)|pds

≤ (t− t0)
p−1E

∫ t

t0

[L1(1 + ||xn−1
s ||2)2]

p
2ds

≤ (t− t0)
p−1(2L1)

p
2E

∫ t

t0

(1 + ||xn−1
s ||p)ds. (19)

For the third term I3 in (17), we have

I3 = E sup
t0≤s≤t

|
∫ s

t0

∫
U

h(xn−1
σ , u)Ñp̄(dσ, du) +

∫ s

t0

∫
U

h(xn−1
σ , u)π(du)dσ|p

≤ 2p−1E sup
t0≤s≤t

|
∫ s

t0

∫
U

h(xn−1
σ , u)Ñp̄(dσ, du)|p

+2p−1E sup
t0≤s≤t

|
∫ s

t0

∫
U

h(xn−1
σ , u)π(du)dσ|p, (20)

where Ñp(dt, du) := Np(dt, du) − π(du)dt. For the last term of (20), using
the Hölder inequality and condition (7), we obtain

E sup
t0≤s≤t

|
∫ s

t0

∫
U

h(xn−1
σ , u)π(du)dσ|p

≤ E[

∫ t

t0

ds]p−1

∫ t

t0

|
∫
U

h(xn−1
s , u)π(du)|pds

≤ (t− t0)
p−1E

∫ t

t0

[

∫
U

π(du)]
p
2 [

∫
U

|h(xn−1
s , u)|2π(du)]

p
2ds

≤ (t− t0)
p−1[π(U)]

p
2E

∫ t

t0

[L1(1 + ||xn−1
s ||2)]

p
2ds

≤ (t− t0)
p−1(2L1)

p
2 [π(U)]

p
2E

∫ t

t0

(1 + ||xn−1
s ||p)ds. (21)
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Now let us estimate the martingale part in (20). By the Kunita’s estimates
(see Kunita [27] and Applebaum [28]), conditions (7)-(8) and properties of
stochastic integral with respect to a Poisson random measure, we have a
positive real number cp such that the following inequality holds:

E sup
t0≤s≤t

|
∫ s

t0

∫
U

h(xn−1
σ , u)Ñp̄(dσ, du)|p

≤ cp{E
∫ t

t0

[

∫
U

|h(xn−1
s , u)|2π(du)]

p
2ds+ E[

∫ t

t0

∫
U

|h(xn−1
s , u)|pπ(du)ds]}

≤ cp{E
∫ t

t0

[L1(1 + ||xn−1
s ||)]

p
2ds+ L2E

∫ t

t0

(1 + ||xn−1
s ||p)ds}

≤ cp[(2L1)
p
2 + L2]E

∫ t

t0

(1 + ||xn−1
s ||p)ds. (22)

Inserting (21) and (22) into (20), we obtain that

I3 ≤ c1E

∫ t

t0

(1 + ||xn−1
s ||p)ds. (23)

where c1 = 2p−1[(2L1)
p
2 (t− t0)

p−1(π(U))
p
2 + cp((2L1)

p
2 + L2)]. Therefore,

E sup
t0≤s≤t

|xn(s)−D(xns )|p

≤ 3p−1(1 + k0)
pE||ξ||p + c2E

∫ t

t0

(1 + ||xn−1
s ||p)ds, (24)

where c2 = 3p−1[(t− t0)
p−1(2L1)

p
2 + c1]. Combing (16) and (24) together, we

have

E sup
t0≤s≤t

|xn(s)|p ≤ c3 + c4E

∫ t

t0

||xn−1
s ||pds. (25)

where c3 = [ k0
1−k0

+ 3p−1 (1+k0)p

(1−k0)p
]E||ξ||p + c2

(1−k0)p
(T − t0) and c4 =

c2
(1−k0)p

. For
any r ≥ 1,

max
1≤n≤r

E sup
t0≤s≤t

|xn(s)|p ≤ c3 + c4

∫ t

t0

max
1≤n≤r

E sup
t0≤σ≤s

|xn−1(σ)|pds

≤ c3 + c4

∫ t

t0

(E||ξ||p + max
1≤n≤r

E sup
t0≤σ≤s

|xn(σ)|p)ds.
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From the Gronwall inequality, we derive that

max
1≤n≤r

E sup
t0≤t≤T

|xn(t)|p ≤ (c3 + c4(T − t0)E||ξ||p)ec4(T−t0).

Since r is arbitrary, we must have

E sup
t0≤t≤T

|xn(t)|p ≤ (c3 + c4(T − t0)E||ξ||p)ec4(T−t0), (26)

which shows that the desired result holds with c = (c3+c4(T−t0)E||ξ||p)ec4(T−t0).
Lemma 3.3 Let the conditions of Theorem 3.1 hold. Then {xn(t)} (n ≥

0) defined by (9) is a Cauchy sequence in D([t0, T ], R
n).

Proof: For n ≥ 1 and t ∈ [t0, T ], it follows from (9) that,

xn+1(t)− xn(t) = D(xn+1
t )−D(xnt ) +

∫ t

t0

[f(xns , s)− f(xn−1
s , s)]ds

+

∫ t

t0

∫
U

[h(xns , u)− h(xn−1
s , u)]Np̄(ds, du). (27)

Similar to the analysis of (14), by lemma 3.1 and taking the expectation on
|xn+1(t)− xn(t)|p, we have

E( sup
t0≤s≤t

|xn+1(s)− xn(s)|p)

≤ k0E( sup
t0≤s≤t

|xn+1(s)− xn(s)|p)

+
1

(1− k0)p−1
E sup

t0≤s≤t
|[xn+1(s)− xn(s)]− [D(xn+1

s )−D(xns )]|p.(28)

Consequently,

E( sup
t0≤s≤t

|xn+1(s)− xn(s)|p)

≤ 1

(1− k0)p
E sup

t0≤s≤t
|[xn+1(s)− xn(s)]− [D(xn+1

s )−D(xns )]|p. (29)

The basic inequality |a+ b|p ≤ 2p−1(|a|p + |b|p) implies that

E sup
t0≤s≤t

|[xn+1(s)− xn(s)]− [D(xn+1
s )−D(xns )]|p

≤ 2p−1[E sup
t0≤s≤t

|
∫ s

t0

[f(xnσ, σ)− f(xn−1
σ , σ)]dσ|p

+E sup
t0≤s≤t

|
∫ s

t0

∫
U

[h(xnσ, u)− h(xn−1
σ , u)]Np̄(dσ, du)|p]. (30)
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Applying the Hölder inequality and (H2), we obtain

E sup
t0≤s≤t

|
∫ s

t0

[f(xnσ, σ)− f(xn−1
σ , σ)]dσ|p

≤ (t− t0)
p−1E

∫ t

t0

|f(xns , s)− f(xn−1
s , s)|pds

≤ (t− t0)
p−1k

p
2

∫ t

t0

E||xns − xn−1
s ||pds. (31)

By the Kunita’s estimates, Hölder inequality and (H2)-(H3), there exists a
positive constant c5 such that

E sup
t0≤s≤t

|
∫ s

t0

∫
U

[h(xnσ, u)− h(xn−1
σ , u)]Np̄(dσ, du)|p

≤ 2p−1E sup
t0≤s≤t

|
∫ s

t0

∫
U

[h(xnσ, u)− h(xn−1
σ , u)]Ñp̄(dσ, du)|p

+2p−1E sup
t0≤s≤t

|
∫ s

t0

∫
U

[h(xnσ, u)− h(xn−1
σ , u)]π(du)dσ|p

≤ 2p−1[(t− t0)
p−1(π(U))

p
2E

∫ t

t0

[

∫
U

|h(xns , u)− h(xn−1
s , u)|2π(du)]

p
2ds

+cp2
p−1{E

∫ t

t0

[

∫
U

|h(xns , u)− h(xn−1
s , u)|2π(du)]

p
2ds

+E[

∫ t

t0

∫
U

|h(xns , u)− h(xn−1
s , u)|pπ(du)ds]}

≤ c5E

∫ t

t0

||xns − xn−1
s ||pds, (32)

where c5 = 2p−1{[(t − t0)
p−1(π(U))

p
2 + cp]k

p
2 + cpL

∫
U
|u|pπ(du)}. Hence,

inserting (30)-(32) into (29) yields

E( sup
t0≤s≤t

|xn+1(s)− xn(s)|p) ≤ c6

∫ t

t0

E( sup
t0≤σ≤s

|xn(σ)− xn−1(σ)|p)ds, (33)

where c6 = k
p
2 2p−1 1

(1−k0)p
[(T − t0)

p−1 + c5].

Setting φn(t) = E sup
t0≤s≤t

|xn+1(s)− xn(s)|p, we have

φn(t) ≤ c6

∫ t

t0

φn−1(s1)ds1 ≤ c26

∫ t

0

ds1

∫ s1

t0

φn−2(s2)ds2
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≤ · · ·

≤ cn6

∫ t

t0

ds1

∫ s1

t0

ds2 · · ·
∫ sn−1

t0

φ0(sn)dsn. (34)

From the Kunita’s estimates, Hölder inequality and conditions (7)-(8), we
have

φ0(t) = E sup
t0≤s≤t

|x1(s)− x0(s)|p ≤ c0. (35)

Substituting (35) into (34) and integrating the right hand side, we obtain

E( sup
t0≤s≤t

|xn+1(s)− xn(s)|p) ≤ c0
(c6(t− t0))

n

n!
. (36)

Taking t = T in (36), we have

E( sup
t0≤t≤T

|xn+1(t)− xn(t)|p) ≤ c0
(c6(T − t0))

n

n!
. (37)

Then using the Chebyshev inequality, one gets

P ( sup
t0≤t≤T

|xn+1(t)− xn(t)| > 1

2n
) ≤ c0M

(c6(T − t0))
n

n!
.

Since Σ∞
n=0

c0M(c6(T−t0))n

n!
<∞, and by the Borel-Cantelli lemma, we have

P ( sup
t0≤t≤T

|xn+1(t)− xn(t)| ≤ 1

2n
) = 1. (38)

(38) implies that for each t, {xn(t)}n=1,2··· is a Cauchy sequence on [t0, T ]
under sup |.|. However, the space D([t0, T ], R

n) is not a complete space
under sup |.| and we cannot get the limit of the sequence {xn(t)}n≥1. So we
need to introduce a metric to make the space D([t0, T ], R

n) complete. For
any x, y ∈ D([t0, T ], R

n), P.Billingsley [29] gives the following metric

d(x, y) = inf
λ∈Λ

{ sup
t0≤t≤T

|xt − yλ(t)|+ sup
t0≤s≤t≤T

|logλ(t)− λ(s)

t− s
|},

where Λ = {λ = λ(t) : λ is strictly increasing, continuous on t ∈ [t0, T ], such
that λ(t0) = t0, λ(T ) = T}. So we have that D([t0, T ], R

n) is a complete met-
ric space. Taking λ(t) = t, we can see that {xn(t)}n≥1 is a cauchy sequence
under d(., .). The proof is completed.
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Proof of Theorem 3.1 Uniqueness. Let x(t) and y(t) be two solutions
of Eq.(1). Then, for t ∈ [t0, T ], by the Kunita’s estimates, Hölder inequality,
we have

E sup
t0≤s≤t

|x(s)− y(s)|p ≤ c

∫ t

t0

E sup
t0≤u≤s

|x(u)− y(u)|pds. (39)

Therefore, using the Gronwall inequality, we get

E sup
t0≤s≤t

|x(s)− y(s)|p = 0, t ∈ [t0, T ],

which implies that x(t) = y(t) for all t ∈ [t0, T ]. Therefore, for all t ∈ [t0, T ],
x(t) = y(t) a.s.

Existence. We derive from Lemma 3.3 that {xn(t)}n=1,2··· is a Cauchy
sequence in D([t0, T ], R

n). Hence, there exists a unique solution x(t) ∈
D([t0, T ], R

n) such that d(xn(.), x(.)) → 0 as n → ∞. For all t ∈ [t0, T ],
taking limits on both sides of (9) and letting n→ ∞, we then can show that
x(t) is the solution of equation (1). So the proof of Theorem 3.1 is completed.

Next, we relax the Lipschitz conditions (H2)-(H3) and replace them by
the following the local Lipschitz conditions.

(H4) For all φ, ψ ∈ D([−τ, 0];Rn), t ∈ [t0, T ], u ∈ U and ||φ||∨ ||ψ|| ≤ n,
there exist two positive constants kn and L0 such that

|f(φ, t)− f(ψ, t)|2 ∨
∫
U

|h(φ, u)− h(ψ, u)|2π(du) ≤ kn||φ− ψ||2. (40)

(H5) For all φ, ψ ∈ D([−τ, 0];Rn), p ≥ 2, u ∈ U and ||φ|| ∨ ||ψ|| ≤ n,
there exists a positive constant Ln such that

|h(φ, u)− h(ψ, u)|p ≤ Ln||φ− ψ||p|u|p. (41)

where π(U) <∞ and
∫
U
|u|pdu <∞.

Then, Theorem 3.1 can be generalized as Theorem 3.2.
Theorem 3.2 Let conditions (H1),(H4) and (H5) hold. Then equation

(1) has a unique solution x(t) on [t0, T ] in the sense of Lp-norm. Moreover,
there exists a constants c such that

E sup
t0≤t≤T

|x(t)|p ≤ c.

for any t ∈ [t0, T ].
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Proof: For each n ≥ 1, define the truncation function

fn(t, x) =


f(t, x), if ||x|| ≤ n,

f(t,
nx

||x||
), if ||x|| ≥ n,

(42)

and

hn(x, u) =


h(x, u), if ||x|| ≤ n,

h(
nx

||x||
, u), if ||x|| ≥ n.

(43)

Then fn and hn satisfy the conditions (H1)-(H3). From Theorem 3.1, we
have that the following equation

xn(t) = ξ(0) +D((xn)t)−D(ξ) +

∫ t

t0

fn((xn)s, s)ds

+

∫ t

t0

∫
U

hn((xn)s, u)Np̄(ds, du) (44)

has a unique solution xn(t). Moreover, xn+1(t) is the unique solution of the
equation

xn+1(t) = ξ(0) +D((xn+1)t)−D(ξ) +

∫ t

t0

fn+1((xn+1)s, s)ds

+

∫ t

t0

∫
U

hn+1((xn+1)s, u)Np̄(ds, du). (45)

By (44) and (45), we have

xn+1(t)− xn(t)

= D((xn+1)t)−D((xn)t) +

∫ t

t0

[fn+1((xn+1)s, s)− fn((xn)s, s)]ds

+

∫ t

t0

∫
U

[hn+1((xn+1)s, u)− hn((xn)s, u)]Np̄(ds, du). (46)

For any fixed n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |(xn)t| ≥ n}.

14



Taking the expectation on |xn+1(t) − xn(t)|p and by lemma 3.1, it deduces
that

E sup
t0≤s≤t∧τn

|xn+1(s)− xn(s)|p

≤ 1

(1− k0)p−1
E sup

t0≤s≤t∧τn
|[(xn+1)s − (xn)s]− [D((xn+1)s)−D((xn)s)]|p

+k0E( sup
t0≤s≤t∧τn

|(xn+1)s − (xn)s|p). (47)

Therefore,

E sup
t0≤s≤t∧τn

|xn+1(s)− xn(s)|p

≤ 1

(1− k0)p
2p−1{E( sup

t0≤s≤t∧τn
|
∫ s

t0

[fn+1((xn+1)σ, σ)− fn((xn)σ, σ)]dσ|p

+E( sup
t0≤s≤t∧τn

|
∫ s

t0

∫
U

[hn+1((xn+1)σ, u)− hn((xn)σ, u)]Np̄(dσ, du)|p}

=
1

(1− k0)p
2p−1(J1 + J2). (48)

By the Hölder inequality and rearranging the terms on the right-hand side
by plus and minus technique, we have

J1 ≤ (t ∧ τn − t0)
p−1E

∫ t∧τn

t0

|fn+1((xn+1)s, s)− fn((xn)s, s)|pds

≤ (t ∧ τn − t0)
p−1E

∫ t∧τn

t0

{2p−1|fn+1((xn+1)s, s)− fn+1((xn)s, s)|p

+2p−1|fn+1((xn)s, s)− fn((xn)s, s)|p}ds. (49)

The Kunita’s estimates implies that

J2 ≤ c7E

∫ t∧τn

t0

[

∫
U

|hn+1((xn+1)s, u)− hn((xn)s, u)|2π(du)]
p
2ds

+cp2
p−1E

∫ t∧τn

t0

∫
U

|hn+1((xn+1)s, u)− hn((xn)s, u)|pπ(du)ds

≤ c7E

∫ t∧τn

t0

{
∫
U

[2|hn+1((xn+1)s, u)− hn+1((xn)s, u)|2

15



+2|hn+1((xn)s, u)− hn((xn)s, u)|2]π(du)}
p
2ds

+cp2
2p−2{E

∫ t∧τn

t0

∫
U

|hn+1((xn+1)s, u)− hn+1((xn+1)s, u)|pπ(du)ds

+E

∫ t∧τn

t0

∫
U

|hn+1((xn+1)s, u)− hn((xn)s, u)|pπ(du)ds}, (50)

where c7 = 2p−1[(t ∧ τn − t0)
p−1(π(U))

p
2 + cp]. Combing (48)-(50) together,

it follows that

E sup
t0≤s≤t∧τn

|xn+1(s)− xn(s)|p

≤ 1

(1− k0)p
2p−1(T − t0)

p−1E

∫ t∧τn

t0

{2p−1|fn+1((xn+1)s, s)

−fn+1((xn)s, s)|p + 2p−1|fn+1((xn)s, s)− fn((xn)s, s)|p}ds

+
1

(1− k0)p
2p−1{c7E

∫ t∧τn

t0

{
∫
U

[2|hn+1((xn+1)s, u)− hn+1((xn)s, u)|2

+2|hn+1((xn)s, u)− hn((xn)s, u)|2]π(du)}
p
2ds

+cp2
2p−2{E

∫ t∧τn

t0

∫
U

|hn+1((xn+1)s, u)− hn+1((xn+1)s, u)|pπ(du)ds

+E

∫ t∧τn

t0

∫
U

|hn+1((xn+1)s, u)− hn((xn)s, u)|pπ(du)ds}}. (51)

For t0 ≤ t ≤ τn, we have

fn+1((xn)t, t) = fn((xn)t, t) = f((xn)t, t),

hn+1((xn)t, u) = hn((xn)t, u) = h((xn)t, u). (52)

By (52), we get from (51),

E sup
t0≤s≤t∧τn

|xn+1(s)− xn(s)|p

≤ 1

(1− k0)p
22p−2(T − t0)

p−1E

∫ t∧τn

t0

|fn+1((xn+1)s, s)− fn+1((xn)s, s)|pds

+
1

(1− k0)p
2p−1{c7E

∫ t∧τn

t0

{
∫
U

[2|hn+1((xn+1)s, u)

−hn+1((xn)s, u)|2]π(du)}
p
2ds
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+cp2
2p−2E

∫ t∧τn

t0

∫
U

|hn+1((xn+1)s, u)− hn+1((xn+1)s, u)|pπ(du)ds}.

(53)

By the local Lipschitz conditions (H4) and (H5), we have

E sup
t0≤s≤t∧τn

|xn+1(s)− xn(s)|p ≤ c8E

∫ t∧τn

t0

||(xn+1)s − (xn)s||pds

≤ c8

∫ t

t0

E sup
t0≤σ≤s∧τn

|xn+1(σ)− xn(σ)|pds,

(54)

where c8 =
1

(1−k0)p
{k

p
2
n+1[2

2p−2(T−t0)p−1+2
3
2
p−2c7]+cp2

3p−3Ln+1

∫
U
|u|pπ(du)}.

From (54) and the Gronwall inequality, we get

E sup
t0≤s≤t∧τn

|xn+1(s)− xn(s)|p = 0, (55)

which yields

xn+1(t) = xn(t), for t ∈ [t0, τn]. (56)

It then deduced that τn is increasing, that is as n → ∞, τn ↑ T a.s. By
the linear growth condition (7) and (8), for almost all ω ∈ Ω, there exists
an integer n0 = n0(ω) such that τn = T as n ≥ n0. Now define x(t) by
x(t) = xn0(t) for t ∈ [t0, T ]. Next to verify that x(t) is the solution of
equation (1). By (56), x(t ∧ τn) = xn(t ∧ τn), and it follows from (44) that

x(t ∧ τn)−D(xt∧τn)

= ξ(0)−D(ξ) +

∫ t∧τn

t0

fn(xs, s)ds+

∫ t∧τn

t0

∫
U

hn(xs, u)Np̄(ds, du)

= ξ(0)−D(ξ) +

∫ t∧τn

t0

f(xs, s)ds+

∫ t∧τn

t0

∫
U

h(xs, u)Np̄(ds, du). (57)

Letting n→ ∞ on both sides of (57), we obtain

x(t ∧ T )−D(xt∧T )

= ξ(0)−D(ξ) +

∫ t∧T

t0

f(xs, s)ds+

∫ t∧T

t0

∫
U

h(xs, u)Np̄(ds, du).
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that is

x(t)−D(xt) = ξ(0)−D(ξ) +

∫ t

t0

f(xs, s)ds+

∫ t

t0

∫
U

h(xs, u)Np̄(ds, du),

which implies that x(t) is the solution of equation (1). By stopping our
process x(t), uniqueness of the solution to equation (1) is obtained. Moreover,
by the proof of Theorem 3.1, we can easily obtain that E sup

t0≤t≤T
|x(t)|p ≤ c.

The proof is completed.

4. Asymptotic estimations for solutions

In this section, we will give the exponential estimate of the solution to
equation (1).

According to the definition of Ñp̄(dt, du) := Np̄(dt, du)− π(du)dt, we can
rewrite equation (1) as the following equation

d[x(t)−D(xt)] = F (t, xt)dt+

∫
U

h(xt, u)Ñp̄(dt, du), (58)

where F (t, xt) = f(xt, t) +
∫
U
h(xt, u)π(du).

Let C2,1(Rn×[t0−τ, T ), R+) denote the family of all nonnegative functions
V (x, t) on Rn × [t0 − τ, T ) which are continuously twice differentiable with
respect to x and continuously once differentiable with respect to t. For a
V ∈ C2,1(Rn × [t0 − τ, T ), R+), one can define the Kolmogorov operator LV
as follows:

LV (x, y, t) ≡ Vt(x−D(y), t) + Vx(x−D(y), t)F (t, y)

+

∫
U

[V (x−D(y) + h(y, u), t)− V (x−D(y), t)

−Vx(x−D(y), t)h(y, u)]π(du), (59)

where

Vt(x, t) =
∂V (x, t)

∂t
, Vx(x, t) = (

∂V (x, t)

∂x1
, · · · , ∂V (x, t)

∂xn
).

First, we establish the p-th exponential estimations of the solution to
equation (1).
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Theorem 4.1 Let {x(t), t0 ≤ t ≤ T} be a solution of equation (1) whose
coefficients satisfy conditions (H1) and (H2). For a given integer p ≥ 2 and
any 2 ≤ q ≤ p, there exists a positive constant K such that∫

U

|h(φ, u)|qπ(du) ≤ K||φ||q. (60)

Then, for any t0 ≤ t ≤ T ,

E sup
t0−τ≤s≤t

|x(s)|p ≤ [1 + (1 + c12)E||ξ||p]eM(t−t0), (61)

where M = 2(c9+c10+c11)
(1−k0)p

. c9, c10, c11, c12 are four positive constants of (68),

(74), (80), (82).
Proof: Let V (x(t) − D(xt), t) = 1 + |x(t) − D(xt)|p, then Vt(x(t) −

D(xt), t) = 0. Applying the Itô formula to V (x(t)−D(xt), t), we obtain that

V (x(t)−D(xt), t) = V (x(t0 −D(xt0)), t0) +

∫ t

t0

LV (x(s), xs, s)ds

+

∫ t

t0

∫
U

[V (x(s)−D(xs) + h(xs, u), s)

−V (x(s)−D(xs), s)]Ñp̄(ds, du). (62)

By (59), we have

1 + |x(t)−D(xt)|p = 1 + |x(t0)−D(xt0)|p

+p

∫ t

t0

|x(s)−D(xs)|p−2[x(s)−D(xs)]
⊤F (s, xs)ds

+

∫ t

t0

∫
U

{(1 + |x(s)−D(xs) + h(xs, u)|p)− (1 + |x(s)−D(xs)|p)

−p|x(s)−D(xs)|p−2[x(s)−D(xs)]
⊤h(xs, u)}π(du)ds

+

∫ t

t0

∫
U

{(1 + |x(s)−D(xs) + h(xs, u)|p)

−(1 + |x(s)−D(xs)|p)}Ñp̄(ds, du). (63)

Taking the expectation on both sides of (63), one gets

E sup
t0≤s≤t

(1 + |x(s)−D(xs)|p)
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≤ 1 + E sup
t0≤s≤t

|ξ +D(ξ)|p + pE

∫ t

t0

|x(s)−D(xs)|p−1|F (s, xs)|ds

+pE sup
t0≤s≤t

∫ s

t0

∫
U

|x(σ)−D(xσ)|p−2[x(σ)−D(xσ)]
⊤h(xσ, u)Ñp̄(dσ, du)

+E sup
t0≤s≤t

∫ s

t0

∫
U

{|x(σ)−D(xσ) + h(xσ, u)|p − |x(σ)−D(xσ)|p

−p|x(σ)−D(xσ)|p−2[x(σ)−D(xσ)]
⊤h(xσ, u)}Np̄(dσ, du)

≤ 1 + (1 + k0)
pE||ξ||p +

3∑
i=1

Qi, (64)

where

Q1 = pE

∫ t

t0

|x(s)−D(xs)|p−1|F (s, xs)|ds,

Q2 = pE sup
t0≤s≤t

∫ s

t0

∫
U

|x(σ)−D(xσ)|p−2[x(σ)−D(xσ)]
⊤h(xσ, u)Ñp̄(dσ, du),

Q3 = E sup
t0≤s≤t

∫ s

t0

∫
U

{|x(σ)−D(xσ) + h(xσ, u)|p − |x(σ)−D(xσ)|p

−p|x(σ)−D(xσ)|p−2[x(σ)−D(xσ)]
⊤h(xσ, u)}Np̄(dσ, du).

Let us estimate Q1. By the basic inequality

arb1−r ≤ ra+ (1− r)b, r ∈ [0, 1],

we derive that

ap−1b ≤ ε1(p− 1)

p
ap +

1

pεp−1
1

bp,

where a, b, ε1 > 0. Hence,

Q1 ≤ pE

∫ t

t0

[
ε1(p− 1)

p
|x(s)−D(xs)|p +

1

pεp−1
1

|F (s, xs)|p]ds

≤ pE

∫ t

t0

[
ε1(p− 1)

p
(1 + k0)

p||xs|p +
1

pεp−1
1

|F (s, xs)|p]ds. (65)

By using lemma 3.1, we have

E

∫ t

t0

|F (s, xs)|pds
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≤ E

∫ t

t0

[1 + ε
1

p−1 ]p−1[|
∫
U

h(xs, u)π(du)|p +
|f(xs, s)|p

ε
]ds.

≤ (2L)
p
2E

∫ t

t0

[1 + ε
1

p−1 ]p−1[((π(U))
p
2 +

1

ε
)(1 + ||xs||p)]ds. (66)

Letting ε = (2L)p−1, then we get

E

∫ t

t0

|F (s, xs)|pds ≤ (1 + 2L)
3p
2
−1(π(U))

p
2E

∫ t

t0

(1 + ||xs||p)ds. (67)

Inserting (67) into (65) and letting ε1 =
1+2L
1+k0

, we obtain that

Q1 ≤ pE

∫ t

t0

[
ε1(p− 1)(1 + k0)

p

p
||xs||p

+
(1 + 2L)

3p
2
−1(π(U))

p
2

pε
p−2
2

1

(1 + ||xs||p)]ds

≤ c9E

∫ t

t0

(1 + ||xs||p)ds, (68)

where c9 = (1 + 2L)p(1 + k0)
p−1[p + (π(U))

p
2 ]. For the estimation of Q2.

By using the Burkholder-Davis inequality, there exists a positive constant c̃p
such that

Q2 ≤ pc̃pE[

∫ t

t0

∫
U

|x(s)−D(xs)|2p−2|h(xs, u)|2π(du)ds]
1
2

≤ pc̃pE[ sup
t0≤s≤t

|x(s)−D(xs)|p(
∫ t

t0

∫
U

|x(s)−D(xs)|p−2

×|h(xs, u)|2π(du)ds)]
1
2 . (69)

Further, for any ε > 0, the Young inequality implies that

Q2 ≤ pc̃p[εE sup
t0≤s≤t

|x(s)−D(xs)|p]
1
2 [
1

ε
E(

∫ t

t0

∫
U

|x(s)−D(xs)|p−2

×|h(xs, u)|2π(du)ds)]
1
2

≤ pc̃pε

2
E sup

t0≤s≤t
|x(s)−D(xs)|p +

pc̃p
2ε
E

∫ t

t0

∫
U

|x(s)−D(xs)|p−2

×|h(xs, u)|2π(du)ds. (70)
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Letting ε = 1
pc̃p

, we obtain

Q2 ≤ 1

2
E sup

t0≤s≤t
|x(s)−D(xs)|p +

1

2
p2c̃2pE

∫ t

t0

∫
U

|x(s)−D(xs)|p−2

×|h(xs, u)|2π(du)ds. (71)

By the following inequality (see Mao[2]),

ap−2b2 ≤ ε2(p− 2)

p
ap +

1

pε
p−2
2

2

bp, a, b, ε2 > 0,

and condition (60), we have

E

∫ t

t0

∫
U

|x(s)−D(xs)|p−2|h(xs, u)|2π(du)ds

≤ (p− 2)ε2
p

E

∫ t

t0

∫
U

|x(s)−D(xs)|pπ(du)ds

+
2

pε
p−2
2

2

E

∫ t

0

∫
U

|h(xs, u)|pπ(du)ds]

≤ [
(p− 2)ε2(1 + k0)

p

p
]E

∫ t

t0

∫
U

||xs||pπ(du)ds

+
2

pε
p−2
2

2

KE

∫ t

0

||xs||pds] (72)

Letting ε2 =
1

(1+k0)2
,

E

∫ t

t0

∫
U

|x(s)−D(xs)|p−2|h(xs, u)|2π(du)ds

≤ [
(p− 2)

p
π(U) +

2K

p
](1 + k0)

p−2E

∫ t

t0

||xs||pds. (73)

Inserting (73) into (71), we obtain

Q2 ≤ c10E

∫ t

t0

||xs||pds+
1

2
E sup

t0≤s≤t
|x(s)−D(xs)|p, (74)
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where c10 = 1
2
pc̃2p[(p − 2)π(U) + 2K](1 + k0)

p−2. Finally, let us estimate

Q3. Since Np̄(dt, du) = Ñp̄(dt, du) + π(du)dt and Ñp̄(dt, du) is a martingale
measure, we get

Q3 = E

∫ t

t0

∫
U

{|x(s)−D(xs) + h(xs, u)|p − |x(s)−D(xs)|p

−p|x(s)−D(xs)|p−2[x(s)−D(xs]
⊤h(xs, u)}π(du)ds. (75)

We note that it has the form

E

∫ t

t0

∫
U

{f(x(s)−D(xs) + h(xs, u))− f(x(s)−D(xs))

−f ′(x(s)−D(xs))h(xs, u)}π(du)ds, (76)

where f(x) = |x|p. Using the Taylor formula, there exists a positive constant
Mp, such that for p ≥ 2

f(x(s)−D(xs) + h(xs, u))− f(x(s)−D(xs))

−f ′(x(s)−D(xs))h(xs, u)

= |x(s)−D(xs) + h(xs, u)|p − |x(s)−D(xs)|p

−p|x(s)−D(xs)|p−2[x(s)−D(xs)]
⊤h(xs, u)

≤ Mp[|x(s)−D(xs) + h(xs, u)|p−2|h(xs, u)|2]. (77)

Again the basic inequality |a + b|p−2 ≤ 2p−3(|a|p−2 + |b|p−2) and the Young
inequality implies that

Q3 ≤ MpE

∫ t

t0

∫
U

[|x(s)−D(xs) + h(xs, u)|p−2|h(xs, u)|2]π(du)ds

≤ Mp2
p−3E

∫ t

t0

∫
U

[(|x(s)−D(xs)|p−2 + |h(xs, u)|p−2)|h(xs, u)|2]π(du)ds

≤ Mp2
p−3p− 2

p
(1 + k0)

p−2π(U)E

∫ t

t0

||xs||pds

+Mp2
p−3(1 +

2(1 + k0)
p−2

p
)E

∫ t

t0

∫
U

|h(xs, u)|pπ(du)ds. (78)

By (60), we have

E

∫ t

t0

∫
U

|h(xs, u)|pπ(du)ds ≤ KE

∫ t

t0

||xs||pds. (79)
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Substituting (79) into (78),

Q3 ≤ c11

∫ t

t0

E||xs||pds, (80)

where c11 =Mp2
p−3[p−2

p
(1 + k0)

p−2π(U) + (1 + 2(1+k0)p−2

p
)K]. Combing (64),

(68), (74) and (80) together, we obtain that

E sup
t0≤s≤t

(1 + |x(s)−D(xs)|p) ≤ 2 + 2(1 + k0)
pE||ξ||p

+2(c9 + c10 + c11)

∫ t

t0

E(1 + ||xs||p)ds.

(81)

On the other hand, by lemma 3.1, we have

E sup
t0≤s≤t

|x(s)|p ≤ k0
1− k0

E||ξ||p

+
1

(1− k0)p
E sup

t0≤s≤t
(1 + |x(s)−D(xs)|p)

≤ c12E||ξ||p +
2(c9 + c10 + c11)

(1− k0)p

∫ t

t0

E(1 + ||xs||p)ds,(82)

where c12 =
k0

1−k0
+ 2+2(1+k0)p

(1−k0)p
. Consequently,

E(1 + sup
t0−τ≤s≤t

|x(s)|p) ≤ 1 + (1 + c12)E||ξ||p

+
2(c9 + c10 + c11)

(1− k0)p

∫ t

t0

E(1 + sup
t0−τ≤σ≤s

|x(σ)|p)ds.

(83)

Therefore, we apply the Gronwall inequality to get

E(1 + sup
t0−τ≤s≤t

|x(s)|p) ≤ [1 + (1 + c12)E||ξ||p]eM(t−t0),

where M = 2(c9+c10+c11)
(1−k0)p

. This completes the proof.
The next result shows that exponential estimations implies almost surely

asymptotic estimations, and we give an upper bound for the sample Lya-
punov exponent.
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Theorem 4.2 Under the conditions (H1)-(H2), we have

lim sup
t→∞

1

t
log|x(t)| ≤ L[(1 + k20) + 3 + 2π(U) + 2c̃22]

(1− k0)2
, a.s. (84)

That is, the sample Lyapunov exponent of the solution should not be greater

than
L[(1+k20)+3+2π(U)+2c̃22]

(1−k0)2
.

Proof: For each n = 1, 2, . . ., it follows from Theorem 4.1 (taking p = 2)
that

E( sup
t0+n−1≤t≤t0+n

|x(t)|2) ≤ βeγn,

where β = k0
1−k0

E||ξ||2 + 2[3+2π(U)+2c̃22]L(T−t0)

(1−k0)2
and γ =

2L[(1+k20)+3+2π(U)+2c̃22]

(1−k0)2
.

Hence, for any ε > 0, by the chebysher inequality, it follows that

P{ω : sup
t0+n−1≤t≤t0+n

|x(t)|2 > e(γ+ϵ)n} ≤ βe−ϵn.

Since Σ∞
n=0βe

−εn < ∞, by the Borel-Cantelli lemma, we deduce that, there
exists a integer n0 such that

sup
t0+n−1≤t≤t0+n

|x(t)|2 ≤ e(γ+ε)n a.s n ≥ n0.

Thus, for almost all ω ∈ Ω, if t0 + n− 1 ≤ t ≤ t0 + n and n ≥ n0, then

1

t
log|x(t)| = 1

2t
log(|x(t)|2) ≤ (γ + ε)n

2(t0 + n− 1)
. (85)

Taking limsup in (85) leads to almost surely exponential estimate, that is,

lim sup
t→∞

1

t
log|x(t)| ≤ γ + ε

2
=
L[(1 + k20) + 3 + 2π(U) + 2c̃22]

(1− k0)2
, a.s.

Required assertion (84) follows because ε > 0 is arbitrary.

5. Conclusion

In this paper, we prove the existence and uniqueness of the solution to
NSFDEs with pure jumps under the Local Lipschitz condition. Meanwhile,
by using the Itô formula, Taylor formula and the Burkholder-Davis inequality,
we establish the p-th exponential estimations and almost surely asymptotic
estimations of the solution to NSFDEs with pure jumps.
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