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ABSTRACT:  

The notion of walk entropy  ,VS G   for a graph G  at the inverse temperature   was put 

forward recently by Estrada et al. (2014) [6]. It was further proved by Benzi [1] that a graph is 

walk-regular if and only if its walk entropy is maximum for all temperatures 0  . Benzi 

(2014) [1] conjectured that walk regularity can be characterized by the walk entropy if and only 

if there is a 0  , such that  ,VS G   is maximum. Here we prove that a graph is walk regular 

if and only if the  , 1 lnVS G n   . We also prove that if the graph is regular but not walk-

regular  , lnVS G n   for every 0  and      ,limln,lim 0 GSnGS VV

  . If the 

graph is not regular then  , lnVS G n   for every 0  for some 0 . 
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1. Introduction.  

The concept of walk entropy was recently proposed as a way of characterizing graphs 

using statistical mechanics concepts [6]. For a simple, undirected graph  ,G V E  with n  

nodes 1 i n   and adjacency matrix A  the walk entropy is defined as 
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    ( Bk  is the Boltzmann constant  and T  the absolute 

temperature). Here AZ Tr e     represents the partition function of the graph, frequently 

referred in the literature as the Estrada index of the graph [3, 4, 9]. The term A

ii
e    represents 

the weighted contribution of every subgraph to the centrality of the corresponding node, known 

as the subgraph centrality  SC i  of the node [7, 5, 8]. The walk entropy called immediately the 

attention in the literature [1] due to its many interesting mathematical properties as well as its 

potentials for characterizing graphs and networks. In [6] the authors stated a conjecture which 

was subsequently proved by Benzi [1] as the following  

Theorem 1.1. [1] A graph is walk-regular if and only if  , lnVS G n   for all 0  . 

Benzi [1] also reformulated another conjecture stated by Estrada et al. [6] in the following 

stronger form 

Conjecture 1.2. [1] A graph is walk-regular if and only if there exists a 0   such that 

 , lnVS G n  . 

A third conjecture to be considered here was originally stated by Estrada et al. [6] as the 

following 

Conjecture 1.3. Let G be a non-regular graph, then  , lnVS G n   for every 0  . 

In this note we prove these two conjectures, which immediately imply that the walk-

entropy is a strong characterization of the walk-regularity in graphs and also gives strong 

mathematical support to the strength of this graph invariant for studying the structure of graphs 

and networks. 

2. Main results 

We start here by stating the two main results of this work. 
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Theorem 2.1. Let A  be the adjacency matrix of a connected graph G . Then the following 

conditions are equivalent: 

(a) G  is walk-regular; 

(b) kA  has a constant diagonal for natural numbers 10  nk ; 

(c) Ae  has constant diagonal  

(d) Ae
 has constant diagonal for 0 ; 

(e) The walk entropy  ,1 lnVS G n . 

 Theorem 2.2. Let A  be the adjacency matrix of a graph G . Then one of the following 

conditions holds: 

(a) G  is walk-regular. Then   nGSV ln,   for every 0   

(b) G  is a regular but not walk-regular graph. Then  , lnVS G n   for every 0 . 

Moreover,      ,limln,lim 0 GSnGS VV

  ; 

(c) There is some 0  such that  , lnVS G n   for every 0 . 

3. Proof of the Theorem 1 

We start by seeing that (a) clearly implies (b). For (b) implies (a), let  

  0
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1 pTpTTp n

n
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be the characteristic polynomial of the graph G . The Cayley-Hamilton theorem yields   0Ap . 

If kA  has a constant diagonal for natural numbers mk 0  and mn 1 , then 
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m ApApA   

has a constant diagonal. 
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Clearly, (a) implies (d) which is equivalent to (c). We shall prove that (d) implies (b). We 

follow the techniques used for Theorem 2.1 in [1]. For ni 1 , we consider 

     iiAA eeTr
n
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to be a real analytic function.  As power series  
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using that G  has no loops and 2

iii
A k     is the degree of the node i   Consider the analytic 

function  

         


 iiiii AAk 4
2

3

2

0
1

123

12 




  

and the limit   kki    10lim  is independent of the node, showing that G  is regular. 

Repeating the argument we get successively that 
k

ii
A    is independent of the node i  for 

4,3k . 

(d) implies (e): let y  be the constant value of the entries of 
Ae . Then   nyZ 1  and 

  n
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 . 

 (e) implies (a):  follows from Theorem 2.2. Q.E.D. 

 4. Auxiliary definitions and results 

Before stating the proof of the Theorem 2.2 we need to introduce some definitions and 

auxiliary results, which are given below. We remind the reader that given a set  1, , sX x x  

of real numbers, the variance is defined as 
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Definition 4.1: Given a matrix M  with diagonal entries nnMM ,,11 , not all zero, we introduce 

the diagonal variance as 

   nnn

i ii
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 . 

Let us now state and proof the following auxiliary result. 

Proposition 4.2: Let A  be the adjacency matrix of a connected graph G . Then one of the 

following conditions holds: 

(a) Ae  has constant diagonal  

(b) Ae  has no constant diagonal entries and G  is a regular graph. Then   02 A

d e  for 

0  and  2lim 0A

d e

   ; 

(c) There is some 0  such that  2 A

d e   for every 0 . 

Proof: We distinguish the following mutually excluding cases according to Theorem 1: 

(1) G  is walk-regular, equivalently, 
Ae  has constant diagonal.  

(2) Ae
 has not constant diagonal, for any 0 .  Then  2 0A

d e   for 0 . 

Observe that for 0  we have   12

1lim A

ii
e i e







     and   1lim Z e







 , where 1  is 

the (Perron) eigenvector of A  corresponding to the maximal eigenvalue 1 . In that situation  
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Therefore   0lim 2 

A

d e
   is equivalent to 1  being constant, or G  being regular.  
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If G  is not regular then the analytic function  2 0A

d e   for 0  and   0lim 2 

A

d e
  . 

Clearly, there is some 0  such that  2 A

d e   for every 0 .  Q.E.D. 

We continue now with some other auxiliary results need to prove the Theorem 2. Let 

1 2 n      be the eigenvalues of A , such that 
1

0
n

jj



 . For the vector of diagonal 

entries  1, , ny y y of 
Ae

 we define a vector  1ln ln , , ln nz y y y   of real numbers. We 

have 
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     , where the inequality is a direct application of 

Hadamard’s theorem for the positive definite matrix 
Ae

. The remarkable result of Borwein and 

Girgensohn [2] states that 

Theorem 4.3. Let  2 2,3,4nc n   and   1 1/ 5nc e n n    and let iz  be defined as before. 

Then [2], 
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Remarks 4.5. (a) Observe that a priori it is not even clear that the sum 
1

i

n
z

i

i

z e


  is positive. (b) 

Borwein-Girgensohn inequality improves a previous bound given by Konstant and Michor [10].  

5. Proof of the Theorem 2 

We know that  , lnVS G n   for every 0  . Observe that for   AZ Tr e      and the 

vertex entropy is 
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The Borwein-Girgersohn [2] inequality yields 
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Moreover, the arithmetic mean-geometric mean inequality yields 
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We distinguish two situations at 0  : 

(1) 2
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 , that is   1iy    for 1, ,i n . Then, 
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and therefore 
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In particular, for any 0  , the arithmetic-geometric mean inequality yields 
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which implies that all ie


 have the same value, that is that all i  have the same value. 

Since   0Tr A  , we have that 0i   for 1, ,ni  . Then, the graph G  is empty (it has no 

links) and  , lnVS G n   for any 0  . 

(2) 2
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 . Then there is a differentiable function  n nc d   such that 
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Since Z n  there is a differentiable function ne  satisfying    0 n ne d    such that 
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For every 0M  , using the compactness of the interval  0, M , there exists an   0M   such 

that    n ne     for  0, M  . Moreover, recall from [3] that 

     2 2

1 1

1

, ln
n

V

i

S G i i  


  . 

This limit is ln n  except when there is a common value  1 1i c  , 1,i n . The latter 

property implies that G  is a regular graph. We consider these cases separately. 

(3) Assume that G  is not a regular graph. Then  , lnVS G n   .  Therefore there exists an 

0   such that for 0,    we have 

2
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 . 

that is,  , lnVS G n   . 

(4) Assume G  is a regular graph. We may assume that G  is not walk-regular. Then, according  

with the analysis in [3], the maximal value  , lnVS G n   is not attained for any    Moreover,   

   
0

lim , ln lim ,V VS G n S G
 

 
 

  .  Q.E.D. 

In closing, the maximum of the walk entropy at 1  , i.e.,  ,1 lnVS G n , is attained only 

for the walk-regular graphs. This means that  ,1VS G  can be used as an invariant to characterize 

walk-regularity in graphs. 
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