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ABSTRACT 
Scotland's Curriculum for Excellence (CfE), constitutes the demands that 
teachers are supposed to meet. Its intentions for the mathematics curriculum are 
similar to those in many countries: that learners be sufficiently mathematically 
literate to use mathematics in the personal, professional and societal dimensions 
of their lives. But like many attempts to reform mathematical curricula elsewhere, 
CfE does not address the fundamental issue of mathematical understanding. Of 
course, learner understanding transcends the mathematical curriculum per se, 
but the significance of mathematical understanding for competent functioning 
exemplifies the imperative of teaching for understanding or 'deep learning'. The 
article begins with some conceptual 'ground clearing' to establish mathematical 
understanding as a neglected issue.  It then considers what mathematical 
understanding is, why it is important, the increasingly important role of 
metacognition, and the very necessary role of teachers. At each of these points, 
implications for pedagogical practice are raised. 
 

MATHEMATICAL UNDERSTANDING AS A NEGLECTED ISSUE  
This article builds on Henderson's (2012) excellent analysis of why 
improvements in mathematical achievement in Scotland are unlikely to be 
instantiated solely through the efforts of its curricular reform Curriculum for 
Excellence (CfE). Henderson argues that current guidance for mathematics is 
more opaque than that in previous curricular incarnations, thereby creating a 
pressing need for mathematics subject knowledge to be explicit in teacher 
education. This paper has no argument with the need for teachers to have 
mathematical knowledge but seeks to emphasise that such knowledge must 
reflect understanding. It will argue that meaningful mathematics teaching is 
rooted in routine engagement in mathematical metacognition. Opportunities to 
share and question one's own and others' thinking is central to developments in 
teaching and learning, because if teacher-educators, student-teachers and 
learners do not attend to their own and others' understanding, the outcomes of 
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the teaching endeavour remain "tacit, elusive and difficult to define" (Loughran, 
2010).  

The learning goals for the mathematics curriculum in Scotland (see Table 1) 
make plain that understanding is a critical component in which the ability to 
reason with, and make sense of, what is learned is central to learners' 
experiences. However, teachers continue to struggle with ways to teach for 
mathematical understanding (Hiebert, 2013) and are bewildered by what they 
see as inadequate curricular guidance, arguing that if it is not evident what 
mathematical learning should take place, it cannot be surprising that it may not 
take place. In spite of the evidence that the documentation of curricular 
implementation is important (Thompson and Senk, 2008) the Scottish 
Government's response to requests for greater delineation emphasises that 
teachers "need to explore, experiment, and exchange ideas about how to make 
Curriculum for Excellence work for them. No amount of well‐meaning advice by 
experts can replace this" (Wiliam, 2011). But curriculum policy documents of 
themselves do not explicate the meaning of the desired reform (Boesen et al., 
2014). Nor is this gap between policy documentation and classroom practice 
filled by the provision of curricular activities and materials. While there is no 
shortage of commercially produced work/books, assessment checks or web 
resources all purportedly aligned to CfE guidance on mathematics; what all of 
these resources focus on is performance evidence of pupil procedural skill. 
Nowhere in Education Scotland’s CfE website at 
http://www.educationscotland.gov.uk/thecurriculum/index.asp, is there any 
substantive discussion of the meaning of understanding; of how teachers' 
accommodate to learners' cognitive affordances and constraints; or of the role of 
learners' cognitive mediations in making any sense of the mathematics 
curriculum.  

This lack of explication of mathematical understanding is not peculiar to the 
Scottish context: the emphasis on procedural mastery of algorithmic skill is 
endemic worldwide (Thompson, 2013, Goldenberg, 2014, Tzur, 2010, Gill and 
Boote, 2012, Venkat et al., 2009). It does, however, pose a barrier to progress in 
mathematical pedagogy because subject-matter can neither be imposed upon 
nor inserted into learners, without their cognitive mediations (Dewey, 1902). So 
how particular learners construe (or misconstrue) the content to which they are 
exposed is a dynamic and central part of the relationship between teaching and 
learning; and is essentially psychological knowledge of profound importance to 
the teacher (Ausubel, 2000). Put simply, teachers cannot fully address their 
pedagogic task without knowing how and what their learners are actually 
learning. 
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TABLE 1: NUMERACY AND MATHEMATICS EXPERIENCES AND O UTCOMES 

Develop a secure understanding of the concepts, principles and processes of 
mathematics and apply these in different contexts, including the world of work;  

Engage with more abstract mathematical concepts and develop important new kinds of 
thinking; 
Understand the application of mathematics, its impact on our society past and present, 
and its potential for the future;  

Develop essential numeracy skills which will allow me to participate fully in society 

Establish firm foundations for further specialist learning; 
Understand that successful independent living requires financial awareness, effective 
money management, using schedules and other related skills; 

Interpret numerical information appropriately and use it to draw conclusions, assess risk, 
and make reasoned evaluations and informed decisions; 

Apply skills and understanding creatively and logically to solve problems, within a variety 
of contexts; 
Appreciate how the imaginative and effective use of technologies can enhance the 
development of skills and concepts. 

 

CONSTITUENT ASPECTS OF MATHEMATICAL UNDERSTANDING 
There is considerable agreement that understanding means being able to explain 
why a particular skill or procedure allows a particular outcome, and being able to 
modify/adapt/invent skills or procedures appropriately in the face of varying 
contextual constraints (Hatano and Inagaki, 1986, Ma, 1999, Skemp, 1976). So 
characterised, any particular piece of understanding is like a jigsaw piece – 
connecting to other jigsaw pieces and supported by a grasp of the larger network 
of knowledge (or entire jigsaw). But understanding is a slippery concept with 
different nuances of interpretation. It is possible for people to behave effectively 
with procedural knowledge: algorithmic skills and the decision rules for how and 
when to apply the skills (Hiebert and Lefevre, 1986). Procedural knowledge is 
important for the functioning of society and can be acquired through direct 
observation, verbal instruction, corrective feedback, and/or supervision. For 
some learners and teachers, procedural knowledge is tantamount to 
understanding when it results in the 'right answer' and speedier solution 
processes (Federici and Skaalvik, 2014, Skemp, 1989).  Procedural knowledge 
has been called instrumental understanding (Skemp, 1976) in that it is formulaic 
recall for achieving results with no back-up if the procedure does not solve the 
problem. A more profound (Ma, 1999) or relational (Skemp, 1976) understanding 
of mathematics reflects a capacity to reason about why a particular procedure 
works without recourse to the memorisation so necessary for instrumental 
understanding (Schoenfeld, 1988, Richland et al., 2012). Relational or profound 
understanding allows an individual to modify an already acquired procedure in 
the face of the demand for 'high-road transfer' (Salomon and Perkins, 1989). 
Distinctions between relational and instrumental understanding have been 
reported in terms of learner behaviour (Duffin and Simpson, 2000). 
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 A relational learner: 

• Can explain 'why' 
• Contemplates before acting  
• Will come up with an answer eventually 
• Adapts to any task, using previous knowledge  
• Attempts to understand, and asks, ‘Why?'  
• Independently creates mathematics new to them 
• Enjoys doing mathematics for its own sake 

An instrumental learner:  

• Cannot explain 'why' 
• Can give immediate answers to particular questions 
• Can sometimes make no progress and be 'stuck' 
• Is inflexible in method  
• Attempts to memorise 
• Is dependent on examples from the teacher 
• Is not likely to find mathematics enjoyable (Reason, 2003)  

The implications of emphasising relational understanding could be quite 
considerable for teachers' practice. The learner's stage of development and pace 
of learning would take precedence over pre-specified curricular coverage. 
Allowing learners the time to explore the mathematical idea under consideration 
and supporting them in their attempts to reflect on their own ideas might create 
considerable change in how the maths class was conducted. Such change might 
be resisted by parents and policy-makers who believed primarily in documenting 
algorithmic and procedural progress.  

THE IMPORTANCE OF RELATIONAL/PROFOUND UNDERSTANDING   
 
Learning mathematics with understanding requires learners to make connections 
between 

• New information and current knowledge 
• Different mathematical ideas and representations (such as drawings and 

physical objects).  
• School mathematics and the mathematical aspects of other everyday contexts 

(Mousley, 2004) 

Making these connections is an iterative and time-demanding process and 
learners must make these connections for themselves as no amount of clear 
explanation and demonstration by the teacher leads directly to relational 
understanding (Hiebert et al., 1997). Rather than being the outcome of a 
declaratively didactic approach to topics such as place value or mutlidigit 
multiplication or subtraction with regrouping or whatever, learners' relational 
understanding of such topics emerges from experience of carefully selected 
mathematical problems (Hiebert et al., 1997). This approach to teaching, in 
which problem solving is the organisational focus of any lesson, is well 
documented in America (Carpenter et al., 2004) and is in nascent form here in 
Scotland (Moscardini, 2010, Moscardini, 2013, Moscardini, 2014). The integrity 
of relational learning remains intact in the problem-solving focus of Cognitively 
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Guided Instruction (CGI) because concepts and procedures develop in concert 
(Carpenter et al., 1999, Empson and Levi, 2011).  As Moscardini's work 
demonstrates, those teachers who have themselves experienced the 
transformation in their own practice as a result of high-quality CGI input, are 
astonished by learners' enjoyment of, engagement in and meaningful exploration 
of mathematical concepts. Unfortunately, however, perhaps because of the 
pressure of accountability (Vogler and Burton, 2010) or because of reverting to 
ways in which they themselves were taught mathematics (Seaman and Szydlik, 
2007); teachers may be resistant to privileging relational learning (Beswick, 
2005), viewing it as an unrealistic expectation over which they believe 
themselves to have little or no control.   To relegate relational understanding to 
laudable but 'optional' status misses the exquisite challenge of being able to 
adapt extant knowledge to address new problems. Relational understanding is 
fundamental to engaging in knowledge construction (Bereiter and Scardamalia, 
2003). Using extant knowledge to leverage further (rather than merely rehearse 
existing) learning is the activity of 'high-road transfer'. In other words, transfer is 
not predominantly a matter of 'learn it here, apply it there' (Perkins and Salomon, 
2012) but an opportunity to revise, reorganise and invent knowledge (Schwartz 
et al., 2012, Lobato, 2012).  

Relational understanding is not a dichotomous state but part of an unending 
continuum. It can always be enhanced but never fully mastered. Further, 
relational understanding is implicated in the needs of learners (who need to 
develop more sophisticated conceptions of mathematics) and in the needs of 
teachers (who are charged with enabling learners' understanding). The 
embodiment of relational understanding in the mathematics classroom is 
problem-solving. Mathematical problem-solving involves multiple cognitive 
processes. Problem solving is directed cognitive processing:  directed because it 
seeks to achieve a goal; cognitive because it occurs in the problem solver's mind 
(and must be inferred indirectly through the problem solver's behaviour); and 
processing because it involves the mental manipulation of knowledge 
representations in the problem solver's cognitive system (Mayer, 2014). While 
solving a mathematical problem means employing mathematical concepts, facts, 
procedures, and reasoning to generate a solution, the more fundamental part of 
problem solving is to construct a representation of the problem (Mayer and 
Hegarty, 1996). Representing the problem means translating a real-world 
scenario into a mental image of what is known/given, what needs to be found 
out, and the allowable operations for solution, without overlooking or omitting all 
relevant detail stated in the problem. Thus the learner has to translate linguistic 
and numerical information into verbal, graphic, symbolic, and quantitative 
representations which capture the relationship(s) in the problem information. This 
is the process of formulating a situation mathematically (OECD, 2013) or 
mathematising a real-life scenario (Van Oers, 2013, Boesen et al., 2014).  This 
translation is both necessary (since without a productive problem representation, 
a solution path cannot be planned) and challenging because of the cognitive 
demands it makes (OECD, 2013). 

Clearly if learners are to construct problem representations for themselves, 
teachers' support of this learning must come from triggering learners to use their 
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own cognitive processing and not from giving 'straightforward' procedural 
guidance. Solving mathematical problems is inherently cognitive activity. 
Complex as it is for learners to negotiate problem representation, and 
subsequently to deploy relevant mathematical skills, learners must also monitor 
and evaluate their progress in executing  problem-solving processes and use 
such knowledge to drive forward their own learning. In summary, enabling 
learners to achieve relational understanding requires that they take responsibility 
for their own learning: through systematic planning and execution; as well as 
monitoring, evaluating and reflecting on their learning; all of which demand their 
metacognitive skillfulness.  

THE IMPORTANT ROLE OF METACOGNITION 
The literature on the architecture of cognition emphasises the efforts that 
individuals make to monitor and control their thoughts and actions. For learners 
to fully internalise their thinking (their cognitions), they must exercise 
metacognition (Gourgey, 1998). Metacognition is essential for learners to 
regulate their own learning, since purely cognitive activity is not the sole 
determinant of mathematical achievement (Furinghetti and Morselli, 2009). 
Metacognition is knowledge of self-instructions for regulating task performance 
and it both feeds on, and helps advance, extant cognition (Veenman et al., 
2006). Metacognition is being invoked when learners use their knowledge to 
determine what information is given and what is needed; when learners plan a 
solution path rather than depend on trial-and-error; when they avoid/repair errors 
while working on the solution; and when they compare the plausibility of their 
answer(s) with the problem statement (Van der Stel et al., 2010). For example, 
Iiskala et al. (2011) found that 10-year-olds engaged in collaborative 
mathematical word-problem solving shared their online thinking to develop 
solution processes. Notably, they intensified their verbal and non-verbal 
exchanges as the problems became more complex. By making their thinking 
explicit through a continuous oral commentary, the learners put their thinking 'on 
the table' for the comment and reflection of peers and teachers, as well as 
themselves (Desoete, 2007). Such commenting allows learners to express how 
they feel about the task and their own progress within it (Efklides et al., 1999, 
Usher, 2009). The teacher can then use learners' comments and views to 
facilitate powerful mathematical discussion so that learners not only gain insight 
into their own understanding but are supported to bring their ideas into alignment 
with canonical understandings of mathematics (Stein et al., 2008).  

So powerful is metacognition in learning mathematics that it can outweigh 
ability in predicting achievement when learners are operating at the boundaries 
of their knowledge (Prins et al., 2006, Schneider and Artelt, 2010). However, the 
circular relationship of metacognition and cognition is often not explicit in the 
mathematics lesson (Montague et al., 2014), although it is now clear that a 
metacognitively based pedagogical protocol for problem solving can generate 
strong learner understanding (Lee et al., 2014).  Metacognition does not emerge 
spontaneously (Veenman et al., 2006, Leutwyler, 2009), but it can be invoked 
when pedagogical practices routinely surface learners' descriptions, explanations 
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and justifications (Van der Stel et al., 2010) . One protocol for embedding 
metacognition suggests training in the use of four broad questions: 

(a) Comprehension: What is the problem all about? (Learners have to 
describe the problem in their own words by focusing on the mathematical 
content.) 

(b) Connection: In what way is the problem at hand similar to or different from 
problems you have solved in the past? (Learners have to explain their 
reasoning.) 

(c) Strategies: Which strategies are appropriate for solving the problem, and 
why? (Learners have to describe, and justify, their choice of strategy) 

(d) Reflection: Does the solution make sense? Am I stuck? Can I solve the 
problem differently? (Learners have to reflect on themselves as solvers, the 
solution processes, and the solution itself). (Mevarech et al., 2010).  

 
The effective use of these questions presupposes that learners will possess 

necessary underpinning knowledge – otherwise known as 'offline metacognition' 
(Desoete et al., 2003) - and where this is shown to be in deficit, pedagogical 
support such as is advocated by Du Toit and Kotze (2009) is required. 
Nevertheless, such 'offline metacognition' must not be used as blunderbuss input 
without regard for content. It must be calibrated to extant curricular achievement 
(Huff and Nietfeld, 2009, Rosenzweig et al., 2011). The effective use of these 
questions also presupposes that teachers themselves are metacognitively 
sophisticated. Historically, the construct of metacognition has not been an explicit 
feature of teacher-education (Veenman et al., 2006); although there is now 
evidence that it is amenable to well thought-out professional development (Zohar 
and Peled, 2008, Zohar and David, 2009). As both a covert internal activity to 
promote cognition, and a socially situated activity to drive discussion illuminating 
individual and group thinking (Garrison and Akyol, 2013), metacognition is a 
valuable dimension of pedagogical practice (Magno, 2010, Wilson and Bai, 2010) 

THE TEACHER'S METACOGNITIVE FOCUS 
In promoting mathematical understanding (Ellis et al., 2014) teachers seek to 
move learners move from appreciating the properties of concrete objects to 
theoretical relations between objects and structures (Steinbring, 2007). In other 
words, we are concerned with learners' mental processing of mathematical 
ideas. To do this, we must focus on learners' representations - the tools with 
which we think, mathematically (Davis and Maher, 1997). Representations refer 
to both internal and external manifestations of ideas and are essential for the 
development of mathematical thought (Duval, 2006). Internal representations are 
individuals' hypothesised semantically-based images, propositions or precepts 
which maintain a relationship with an object or event in its absence (Olson and 
Campbell, 1993, Goldin, 1998); and are abstracted from experience (Von 
Glasersfeld, 1991). External representations are observable physically 
embodiments, taking the form of graphs, diagrams, tables, grids, formulae, 
symbols, words, gestures, software code, videos, manipulatives, concrete 
models, pictures, and sounds (Goldin and Kaput, 1996). External and internal 
representations (which have an interdependent relationship) can be known as 
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the signifier and the signified, or the symbol and the symbolised (Mason, 1987). 
We cannot think about anything (such as dogs, holidays or happiness) without 
having an internal representation of the 'object', but representations are internally 
elaborated through the availability of external configurations (Von Glasersfeld, 
1987, Greeno, 1991). In other words, we do not think about 'nothing' but must 
have some 'object' about which to think. Thus, mathematical thinking is the 
ongoing interactional (re)interpretation(s) of internal and external 
representations. 

The distinction between internal and external representation is important for 
learning mathematics but extremely complex for the teacher to manage. External 
representations are, in principle, accessible to observation by anyone with 
suitable knowledge; but internal representations are not directly accessible to 
anyone other than the individuals (who may be enabled to share their own 
metacognitive awareness).  And yet it is the internal representation -the signified 
or the symbolised - which teacher behaviour is attempting to modify (Marton, 
1974, Richland et al., 2012). The relationship between the external sign and its 
internal interpretation by the learner is a function of the individual's existing 
cognitive structure; and it is this that teachers need to understand if they want 
learners to become more mathematically sophisticated (Duval, 2006), as the 
external representations are merely tools, albeit powerful ones (Schliemann, 
2002). Internal representations, on the other hand, transcend concrete situations 
and are advantageous in solving complex problems (Ding and Li, 2014). 
Constructing internal representations takes time, and requires teachers' attention 
to learners' "concept images" (Tall and Vinner, 1981). For example an early part 
of the learner's concept image (or internal representation) may be that 
subtraction always reduces the answer. Such a view is compromised if negative 
numbers are invoked. Similarly a concept image of multiplication always 
increasing the answer is problematic when fractional factors are introduced. In 
attending to learners' internal representations, teachers need to surface all of the 
mental attributes that learners associate with a given concept, even if these are 
potentially conflicting (Mason and Spence, 1999). If learners can indicate their 
thinking, verbally and/or gesturally, teachers may infer the level of learner 
understanding and, assuming teachers' diagnostic competence in mathematical 
communication (Bräuning and Steinbring, 2011), can deploy instructional 
practices to encourage learners' engagement with their own and other's thinking 
(Webb et al., 2014). However, if teachers make inferences tacitly rather than 
explicitly, as they often do (Goldin and Kaput, 1996) and treat representations as 
pre-given subject matter without regard for individual learners' possible 
understandings, they are (perhaps unwittingly) assuming a transmission view of 
teaching to be superior.   

FOCUSING ON REPRESENTATIONS 
External representations have been categorised into five systems (Lesh et al., 
1987):  

1. Real world scripts – scenarios that serve as contexts for interpreting and solving 
numerical and mathematical problems (problem-solving) 
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2. Manipulative models - Cuisenaire Rods, Unifix Cubes, Fraction Bars, Arithmetic 
Blocks, Number Lines - which have little meaning in themselves but can be used to 
model aspects of reality 
3. Static pictures - pictures or diagrams that can be internalised as images 
4. Written symbols - numerical and mathematical notation and formulae 
5. Spoken language – particular mathematical meaning of words in ordinary English 
and conventional mathematical language 

 

No one representation describes fully a mathematical construct (Dreyfus and 
Eisenberg, 1996). Each has different advantages, so using multiple 
representations for the same mathematical situation seems a logical extension. 
Just as the traveller may have a better understanding of the route he is 
navigating if he has a map as well as a set of directions listing street names and 
turns to follow, so mathematical understanding is strengthened by accessing 
more than one representation. Translating between and among different external 
representations (Janvier, 1987) is highly correlated with mathematical 
competence (Gagatsis and Shiakalli, 2004). Translation essentially means:  

• recognising an idea which is embedded in a variety of qualitatively different 
representational systems (as in the concept of 'threeness' being represented in 
the written word three, the numeral 3, the story of the Three Bears, part of the 
meaning of a triangle, the ordinal position of third, that number written as ⅓, the 
sum of '2 and 1' and so on) 

• manipulating the idea flexibly within given representational systems (such as 
recognising and performing  numerical equivalence tasks in terms of decimal, 
percentage, fractional or ratio as outlined for example at 
http://uk.ixl.com/standards/scotland/maths)  

• translating the idea from one system to another accurately, as most commonly 
recognised in problem-solving  (Lesh et al., 1987). 

Flexibility and adaptability in using multiple external representations as tools is 
clearly desirable, but is difficult to instantiate (Acevedo Nistal et al., 2009, Heinze 
et al., 2009). It is also the very element which is recognised to be problematic in 
Scottish schools. Lest readers regard this claim to be overstated, they need only 
skim the results of reports on mathematical performance over the last 20 years 
or so to learn that: 

• Children do not use mathematics enough in real contexts and for meaningful 
purposes.  

• Their skills in using a range of strategies to solve mathematical problems are not 
well developed.  

• Successive surveys of mathematical achievement report a dip in performance 
from the middle of primary school onwards; evidenced by lack of understanding 
of common and decimal fractions, of ratio and proportion, of percentages and of 
the relationships between these numerical representations: understandings 
which are persistently difficult to construct (Ngu et al., 2014)  

• Average achievement scores have changed little.                              
(Her Majesty's Inspectorate for Education (HMIE), 2009, Her Majesty's 
Inspectorate for Education (HMIE), 2010, Scottish Government, 2010, Scottish 
Government, 2014).  
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Teaching for mathematical understanding would appear to demand more than 
what is on offer just now. Essentially, we are trying to enable learners to develop 
mathematical principles. These principles are by definition abstract and lack 
close relevance to learners' lives. How we enable learners to transcend the 
concrete-abstract divide is not yet well understood, though the studies reviewed 
here suggest promising directions. We must always keep at the front of our 
minds that we seek to enable learners to: 

• understand why their procedures work  
• modify known procedures  
• invent new procedures  
• respond flexibly to contextual variations  
• cross boundary domains to find better solutions (Hatano and Oura, 2003) 

THE VERY NECESSARY ROLE OF TEACHERS 
If we actually believe understanding to be a genuine goal of mathematics 
education, we must be prepared to grapple with the role of thinking in the 
construction of such understanding. Understanding is the product of thinking 
(Thompson, 2013) and thinking is the individual's mental activity to make 
connections and links amongst facts and conditions which, of themselves, are 
"isolated, fragmentary, and discrepant" (Dewey, 1910). Understanding is not 'out 
there' but in the minds of the persons who construct and interpret it. It is therefore 
a necessary part of teaching to enable learners to make explicit their 
perspectives, reasoning and conceptualisations (Schliemann, 2002). To achieve 
this teachers need to focus not primarily on the 'curriculum to be covered' but on 
the learner's mathematical thinking (Steinberg et al., 2004). Providing cognitively 
complex tasks which require learners to think, reason and solve problems 
challenges learners to use their cognitive abilities and converse mathematically 
(Simon and Tzur, 2004, Simon et al., 2010, Clarke et al., 2009, Sullivan et al., 
2013, Gravemeijer, 2014). This demands the attention of classroom teachers 
and academic researchers working interactively. Significant political clout is also 
needed to trigger such a task in the first instance, although recognising that 
these difficulties are not ameliorated by quick procedural fixes would be a useful 
start (Ainsworth, 2006, Lesser and Tchoshanov, 2005, Elia et al., 2007). Yes, of 
course it is possible to induct teachers in the delivery of all manner of 
'programmes' claimed to enhance practice, but these programmes have the 
potential to fail unless there is significant change in curricular policy-making. 

Curricular policy-making must position teachers to be key stakeholders in 
mathematics education research so that they are co-producers of professional 
and/or scientific knowledge. Involving teachers researching their own and/or their 
colleagues’ practice allows the dynamic duality of extending knowledge of the 
field of mathematical pedagogy as well as providing continuing professional 
development for the teachers involved (Kieran et al., 2013). The traditional divide 
between teachers and other stakeholders in education at best identifies teachers 
as being knowledge recipients rather than knowledge builders, and at worst 
stereotypes them as recalcitrant technocrats who need to be kept in line with 
ever-increasing accountability mechanisms. Neither portrayal promotes progress 
(Bevins and Price, 2014, White et al., 2013). Amongst the many stakeholders 
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involved in the education enterprise, it is teachers who are pedagogically expert 
and their voice must be integral to every level of curricular decision-making; be 
this at executive, local authority, cluster group or individual school level. Creating 
mechanisms to permit full teacher-engagement in curricular policy decision 
making is not a trivial task (Daly et al., 2014) but a necessary one, to attenuate 
the tendency to use research evidence to confirm espoused positions rather than 
as part of a learning process to diagnose problems and uncover solutions 
(Finnigan and Daly, 2014). 

CONCLUSION 

 Stimulated by the current curriculum reform in Scotland, this l essay has 
addressed a gap in the CfE documentation: that of a lack of explication of what 
mathematical understanding might mean. Deep reading of the pedagogical 
literature indicates that:  

• Understanding can be at a relational or instrumental level with each having very 
different consequences for teaching and learning 

• Relational understanding is much more profound that instrumental 
understanding but is also more difficult to construct – partly because it is an 
infinite activity  

• Learners need to be supported to make their understandings plain, through 
pedagogical practices to stimulate metacognition 

• Teachers need to be constantly concerned with the ways in which learners 
represent their understanding: an exquisitely demanding but nevertheless 
fundamental aspect of the teacher's role. 

There is now sufficient evidence available to suggest that if Scotland (or 
indeed any developed country) wants to educate its young so that they can 
communicate coherently through using the resources of mathematics, there must 
be a concerted effort to teach mathematics for meaning rather than for 
measurement. 
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