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Inductively guided circuits for ultracold
dressed atoms
German A. Sinuco-León1, Kathryn A. Burrows1, Aidan S. Arnold2 & Barry M. Garraway1

Recent progress in optics, atomic physics and material science has paved the way to study

quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply

connected traps for cold atoms can be prepared by combining inhomogeneous distributions

of DC and radio-frequency electromagnetic fields with optical fields that require complex

systems for frequency control and stabilization. Here we propose a flexible and robust

scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the

‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field

is spatially modulated by inductive effects over a micro-engineered conducting loop.

Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide

operation relies entirely on controlling static and low-frequency fields in the regimes of

radio-frequency and microwave frequencies. This novel trapping scheme can be implemented

with current technology for micro-fabrication and electronic control.
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U
ltracold atomic gases of alkali atoms are suitable for
exploring fundamental questions in physics and develop-
ing quantum technologies. Such a double utility stems

from the possibility of varying the interatomic interaction and
potential landscape, through electromagnetic fields that can be
precisely produced. Advances in this area have lead to impressive
experimental demonstrations of macroscopic quantum phenom-
ena such as matter-wave interferometry1 and persistent matter
flux2,3. This is possible because appropriately tuned radiation
addresses the atomic level structure and affects the dynamics of
both internal as well as motional degrees of freedom4. This
approach has been exploited to create complex miniaturized
potentials for the atomic motion, utilizing laser radiation that
addresses optical dipole transitions. Thus, the features of the
resulting potential landscape vary with a length-scale limited by
optical diffractive effects, being of the same order of magnitude as
the laser wavelength and corresponding to a few hundred
nanometres for alkali atoms.

In contrast, atom chips can create microscopic trapping
structures utilizing long wavelength radiation5. In this case, the
atomic potential landscape is tailored on a micron scale using
electromagnetic fields radiating from micron-sized conductors.
Developments in this area have made it possible to address
atomic energy levels separated by low-frequency photons (radio-
frequency and microwave) where decoherence effects are
substantially reduced in comparison with optical transitions.
These ideas were central for achieving radio-frequency-assisted
coherent splitting of Bose-Einstein condensates for the first time
in ref. 1, and, more recently, for beating the standard quantum
limit with a scanning probe atom interferometer6. Micron and
sub-micron control over atomic gases is at the heart of promising
technological applications in metrology6,7, quantum information
technology8 and quantum simulation9,10, and atom chips are
platforms with great potential for experimental realization of
many of such proposals.

Microscopic ring traps (and toroidal traps) are of particular
interest because of the possibility they offer to study physical
phenomena in a non-trivial geometry with true periodic
boundary conditions and to create atomic analogues of solid
state electronic devices (for example refs 7,11). Trapping of cold
gases in such geometries has been demonstrated with a variety
of experimental techniques, requiring control over optical
fields2,3,12–14 or distributions of magnetic fields15–18. There are
several proposals for creating ring traps that rely solely on the
field produced by DC current carrying conductors, suitable to be
implemented with atom-chip technology (for example, refs
17,19), but having the downside that feed wires can break
desirable symmetries. Such an effect can be mitigated by
employing low-frequency inductive coupling20, where the atoms
are confined by time-averaged magnetic potentials. This idea has
been experimentally demonstrated in millimetre-sized ring
traps18 and proposed to produce microscopic ring traps based
on generalizing the radio-frequency dressing approach21 to an
inductive system22.

In this work, we show that highly configurable quasi-one-
dimensional microscopic guides for ultra-cold alkali atoms result
from the response of an inductive loop to AC magnetic fields
tuned near the atomic ground state hyperfine splitting. We find
various advantages of this approach over optical schemes and
dressing of Zeeman split levels (that is, coupling states within the
same hyperfine manifold)20,22. For example, the present proposal
does not require sophisticated optical control and it is free from
potential symmetry breaking current carrying wires in the vicinity
of the trapping volume19,23–26. In addition, our system can be
designed to create multiply connected atomic circuits, for
example, arrays of connected ring traps, having in mind

applications that benefit from matter-wave interferometry as in
ref. 7. Importantly, in this work we also demonstrate the
experimental feasibility of our scheme using current atom-chip
technology5.

Results
Device concept and trapping mechanism. A sketch of the
physical set-up is shown in Fig. 1. It comprises a micro-
engineered conducting loop (metallic or superconducting), a
static magnetic field BDCẑ (single-headed arrow), and a homo-
geneous AC magnetic field BACcos otð Þẑ (double-headed arrows).
Both fields are transverse to the plane defined by the loop (x� y
in Fig. 1). In response to the electro-motive force induced by the
time variation of the magnetic flux across the area enclosed by the
loop, an electric current circulates within it. The induced current
produces, in its turn, an inhomogeneous magnetic field of the
form Bind(r) cos(otþ d), that modifies the total AC magnetic
field. For sufficiently large frequencies that the inductive
reactance of the loop dominates its Ohmic resistance, the external
and induced fields are almost in anti-phase. Thus, the resulting
field has an approximately quadrupole distribution, schematically
shown in Fig. 2a, whose centre is located close to the conducting
loop at the position where the amplitude of induced and external
fields satisfy Bind¼BAC cos(d) (ref. 20), where dþ p is the relative
phase between external and induced fields.

By tuning the driving angular frequency o near the atomic
ground state hyperfine transition, the AC magnetic field couples
hyperfine Zeeman split sub-levels as depicted in Fig. 2b,c. The
induced energy shifts lead to state-dependent potential energy
landscapes for the atomic centre-of-mass motion, which have
been used for weakly trapping neutral alkali atoms27,28 and
coherent manipulation of Bose-Einstein condensates29. The
electric field associated with the oscillating magnetic field can
be ignored, as the time-averaged quadratic Stark shift is
proportional to the atomic DC polarizability of the ground state
and thus independent of the quantum numbers F and mF

(ref. 30). The energy shifts are conveniently described in terms of
the field components in spherical unit vectors û� 1 ¼ ðx̂� iŷÞ=ffiffiffi

2
p

; û0 ¼ ẑ; ûþ 1 ¼ �ðx̂þ iŷÞ=
ffiffiffi
2
p

, and corresponding Rabi
frequencies ‘O‘ ¼ mBgJ B‘hF0;m0F Ĵ‘

�� ��F;mFi with c¼ � 1,0,1 and
gJ the Landé factor of the electronic angular momentum J. After
the rotating-wave approximation and utilizing second order
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Figure 1 | Elements of an inductively coupled guide for cold atoms.

Atom-chip configuration creating an inductively coupled guide for ultracold

atoms. It shows the magnetic field configuration (arrows), a closed

conductor (yellow) and the generated trapping region (red).
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perturbation theory, near the quadrupole centre the energy shifts
are given by30

DEmF rð Þ ¼ � ‘
4

O0 rð Þj j2

DmF

�

þ j O� 1ðrÞ j 2
DmF �DZeeman

þ j Oþ 1ðrÞ j 2
DmF þDZeeman

�

with ‘DZeeman¼mBgFBDC and the detuning

‘DmF ¼ 2AþmBBDCmFðgF� gF� 1Þ�‘o; ð2Þ
where the zero field hyperfine splitting of the ground state is 2A,
and gF the hyperfine Landé factor. The ± sign in equation (1)
corresponds to the states of the hyperfine manifolds F¼ I±1/2.
Dynamical control over the potential landscape can be exerted via
the amplitude of the applied fields and the detuning. With respect
to these parameters, trapping characteristics scale in a similar
manner to those of optical dipole traps14. First, the trap depth,
defined as the difference between the energy at the trap centre
(r0:¼ (x0,0,0)) and at the geometrical centre of the conducting
ring (r:¼ (0,0,0)), is proportional to the power of the applied AC
field and the inverse of the detuning. Second, the trap frequency
scales in proportion to the amplitude of the field and the inverse
of the square root of the detuning. Notice also that as a
consequence of the linear relation of induced current with both
the amplitude BAC and angular frequency o of the applied field,
the location of the trap centre (x0) is extremely robust to noise on
both parameters. In addition, as shown below, for typical working
parameters the ring trap is sufficiently far from the edge of the
conducting ring that proximity effects can be neglected.

For illustrative purposes, we present calculations for the
hyperfine level structure of 87Rb, denoted by |F, mFS, and shown
in Fig. 2b,c. Nevertheless, our conclusions are straightforwardly
extended to other atomic species with similar energy level
structure. To give an explicit example of the potential landscape
emerging from equation (1), we consider a circular loop of gold
with radius a¼ 100 mm and diameter s¼ 10 mm, corresponding to
approximate resistance R E0.26O and inductance L E0.33 nH
(ref. 31). In this case, the total field distribution produces a
circular trapping region with typical landscapes as shown in
Fig. 3a–d, for states |F¼ 2, mF¼ 1S and |F¼ 1, mF¼ � 1S of
87Rb, and applied fields of BDC¼ 1 G and BAC¼ 2 G. Notice that
in this example the centre of the quadrupole distribution is
located at x0 E70 mm, corresponding to a distance of E20 mm
from the edge of the conducting ring.

The quadrupole AC field distribution produces harmonic
confinement, as the linear dependence of the field amplitude with
the distance to the quadrupole centre translates into a quadratic
variation of the energy shift in equation (1). The tightness of the

trap, quantified by the spatial curvature of DEmFðrÞ along the
x̂ and ẑ directions, is shown in Fig. 3e,f as a function of the
detuning of the driving field (see equation (2)). According to
equation (1), the trapping tightness increases arbitrarily by
reducing the detuning with respect to pairs of transitions,
resulting in the divergent behaviour in Fig. 3e,f (vertical dashed
lines) at integer multiples of DmF=2p ¼ j gFmBBDC j =2p‘ �
0:7 MHz for BDC¼ 1 G.

This trapping scheme provides confinement of two hyperfine
states in overlapping regions, which can be useful for applications
in quantum information processing and metrology6,8. In our
example of Fig. 3e,f, detuning in the range D0/2pA[� 0.5,
0.5]MHz produces energy-shift landscapes for states |F¼ 2,
mF¼ 1S and |F¼ 1, mF¼ � 1S with approximately equal
curvatures for both states. These states experience exactly the
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Figure 2 | Field configuration and level couplings. (a) Side view of the AC magnetic field distribution in the neighbourhood of the conductor:

the uniform external field (left) combines with the induced field (centre) and produces a total field with a quadrupole-like distribution close to the

conductor (right). (b,c) Ground state energy level structure of 87Rb and magnetic couplings of two sub-levels (b) |F¼ 1, mF¼ � 1S (c) |F¼ 2, mF¼ 1S.

Arrows indicate magnetic dipole couplings between pairs of hyperfine sub-levels, corresponding to linear (solid lines) and circular (dashed lines)

polarizations of the magnetic field.
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Figure 3 | Trapping landscapes and frequencies. (a–d) Cross section of

the trapping potential corresponding to D0/2p¼ � 1.1 MHz (left column)

and D0/2p¼0.5 MHz (right column), for the states (a,b) |F¼ 2, mF¼ 1S
and (c,d) |F¼ 1, mF¼ � 1S. Gravitational attraction is included. (e,f) Trap

frequencies corresponding to states |F¼ 2, mF¼ 1S (solid) and |F¼ 1,

mF¼ � 1S (dashed) of 87Rb, as a function of the AC detuning, with

BAC¼ 2 G, BDC¼ 1 G, along the (e) x and (f) z directions. Vertical dotted

lines in (e) and (f) indicate frequencies of resonant driving.
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same potential landscape for a driving field resonant to the
hyperfine splitting, that is, with D0¼ 0. Note that the static
magnetic field makes this resonant driving blue (red) detuned
with respect to coupling of states with mF¼ � 1 (mF¼ 1), as
schematically shown by the solid arrows in Fig. 2b (Fig. 2c).

The detuning of the driving field also provides control over the
shape of the trapping cross section, as seen in the potential
landscapes in Fig. 3a–d. This is because the relative weights of the
terms in equation (1) can be adjusted by changing the offset field
and the driving frequency that determine DmF .

Connected double loop trap. So far we have focused on the
trapping produced by a circular conductor. However, our scheme
offers the possibility of creating complex atomic guides shaped by
the conducting loop. We illustrate this by considering a
demanding case where we impose a severe ‘pinch’ in the shape of
the conducting loop, as depicted in Fig. 4, creating a double loop
with a variety of junction geometries. The field distribution cor-
responding to this case can be understood as follows: away from
the pinch centre, the field distribution is similar to the quadrupole
field in Fig. 1c, while in its neighbourhood the total field results
from combining two quadrupole-like distributions associated
with conducting segments at each side of the constriction. In
particular, when the induced field balances the applied one at the
centre of the pinch, the field distribution acquires a hexapolar
character. The geometry of the resulting potential landscape is
sensitive to the shape of the conductor, while its energy scale is
determined by the amplitude and detuning of the applied fields.
This is illustrated in Fig. 4b,g, where field distributions and energy
landscapes have been obtained for three different constrictions
with sizes differing by E1 mm, producing significantly different
junction geometries. Consideration of this case can be straight-
forwardly applied to more complex geometries of the conductor,
which can be used to create more involved atomic guides.

Finite size effects. Modelling the loop as a single current filament
is insufficient to describe the potential landscape associated with
conductors whose cross sectional radius is comparable to the loop
length18,32. In such a case, the induced current distributes itself
unevenly across the conductor and produces a magnetic field that
differs significantly from the one produced by a single filament,
having direct impact on the quality of the trapping potential
(see Supplementary Methods for details about calculation of the
current distribution within metallic and superconducting
loops32,33). An illustration of these effects is shown in Fig. 5,
where we consider circular loops with square and circular cross
sections made of two different conducting materials commonly
used in atom-chip experiments: gold (Au) and superconducting
niobium (Nb) (ref. 32).

In the case of a normal conductor, the combination of small
skin depth at high frequency with a radially dependent magnetic
flux pushes the induced current towards the outer edge of
the conductor, spreading the current along its surface (see
Supplementary Fig. 1). For superconducting loops, the Meissner
effect, here described by the London equations33, contributes to a
more marked confinement of the current close to the conductor
surface (see Supplementary Fig. 2). In both cases, as a
consequence of distributing the current over a wide area, the
gradient of the magnetic field is reduced in comparison with the
single-filament case. In terms of the atomic potential landscape,
this translates to modifying the trapping position (that is, the
centre of the quadrupole field distribution) and reducing its
tightness (here quantified through the trap frequency along the x
direction, nx). Our numerical results indicate that both position
and trap frequency, although dependent on the conducting

material and cross sectional shape, do not vary strongly with
these parameters. In both cases, the most relevant parameter is
the thickness of the conductor, favouring the use of thin
conductors to produce strong trapping potentials.

Experimental considerations. The design of atom-chips
including current carrying elements is limited by several technical
issues that restrict the range of experimentally accessible
parameters5. In the present case, for example, the goal of
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Figure 4 | Connected loop geometry. A figure-of-eight guide for atoms

in the state |F¼ 2, mF ¼ 1S of 87Rb, produced by a loop with a central

symmetric constriction (orange dashed line in (a)). The conductor shape is

defined by circles of radius 70mm centred at x¼±100mm and a pair of

parabolas that cuts the circle with matching first derivative. (a) Magnetic

field landscape in the loop plane, z¼0, for the applied fields BDC¼ 1 G,

BAC¼ 2 G. (b–g) Left column: iso-energy surface at 0.5 mK corresponding to

central gaps of (b) 35.2mm, (d) 33.9mm and (f) 32.9mm. Right column:

potential energy landscape and field distribution in the plane x¼0,

corresponding to surface plots on the left column. In (b–g) D0/2p¼
0.35 MHz and the colour bar is in logarithmic scale.
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obtaining the tightest possible trap, via small detuning or large
driving fields, should be balanced against an increase in heating of
the conductors and atom-loss rates. In what follows, we briefly
consider these two problems.

Ohmic loses due to the induced current must be restricted to
avoid thermal destruction of the conductive loop, or undesirable
alteration of the trapping track due to thermal deformations of
the conductor. For typical experimental parameters, such as those
in Fig. 3, the average current densities (see Fig. 5b and
Supplementary Figs 1,2) are significantly lower than the maximal
tolerable values demonstrated in experiments with normal and
superconducting materials operating under DC and high-
frequency conditions (E106 A cm� 2)34,35, suggesting that the
heat generated in our proposed trapping set-up can be efficiently
transferred to the supportive structures of the device. Also,
although our numerical results for heating power favours using
thick conductors, this should be balanced against the higher
trapping frequency and better thermal coupling achievable with
thin wires, which can support large current densities and are also
convenient for fabrication5.

We estimate non-adiabatic atom losses in our trapping set-up
by considering an atom moving at speed u in the plane defined by
the conducting loop. After the rotating-wave approximation,
the atom-field interaction is described by the two-level
Hamiltonian8:

H ¼ ‘DmF

2
sz þ

‘O0

2
ðcosðjÞsx þ sinðjÞsyÞ ð3Þ

where si with i¼ x, y, z are Pauli matrices, and the spatially
dependent phase j and Rabi frequency O0, are defined by the
combination of the applied and induced fields. Atom-loss
processes are modelled as transitions between the position-
dependent eigenvectors of Hamiltonian equation (3), denoted by
{|1S,|2S} in the present treatment4. Such dressed states consist of
linear combinations of hyperfine states with the same projection
of angular momentum mF that depends on the amplitude of the
magnetic field. For example, at the centre of the quadrupole field
distribution, where the field is null, the dressed states |1S,|2S
coincide with the hyperfine states |F, mFS,|F� 1, mFS, while very
far from the zero they are equal superposition of these two states.
In the trapping geometry produced by a circular loop of
inductance L and radius a, the rate of transitions between pairs
of dressed states is approximately4:

G 1i! 2ijj � 1
2p

ffiffiffiffi
2
m

r
2L
m0a2

� �3 ‘u
4

� �2 O0j j3

DmFð Þ9=2 ð4Þ

Under typical experimental conditions, for example, an atom
moving with speed uE10 mm s� 1 (corresponding to a tempera-
ture of 1 mK), and for the trap configuration presented in Fig. 3,

equation (4) predicts non-adiabatic transitions with a rate of
B10� 5 Hz, allowing enough time for manipulation of the
trapped atoms.

Feeding the external field into the conducting loop presents
another potential challenge. However, in the case of 6Li and
light atoms, the driving frequency falls in the MHz range,
where several well-known techniques can easily be employed5.
For the case of Rb and Cs isotopes, the driving field should have a
frequency in the GHz range, for which near-surface fields of
a microwave source could be suitable30,34–36. For example, a
sufficiently uniform field of 2 G at a frequency of 6.8 GHz can be
generated by a feeding structure consisting of a single-turn
circular conductor of radius 1.7 mm, positioned concentrically on
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the same chip as the inductive loop. The dimensions of this
feeding conductor are an order of magnitude larger than the
inductive loop, and it is sufficiently far away that a small break for
connecting a coaxial signal will not cause significant end effects
near the smaller loop. Moreover, the amplitude of the produced
field is uniform over the smaller loop at the o1% level (see
Supplementary Fig. 3). The inductance of the feeding loop is
B6 nH, with a resistance B0.2O, due to the 1 mm skin depth at
this frequency. The inductive impedance of the feeding loop
(B250O) can be cancelled at resonant microwave frequencies by
a small capacitor of B0.1 pF. In addition, a resistor in series with
the feeding loop provides control of the resonance full-width-
half-maximum, which naturally is B7 MHz. The feeding loop
needs to carry a current of B0.5 A to generate a 2 G field at its
geometrical centre, which is achievable using a transformer to
drive the low impedance load via a (high impedance) commercial
microwave source and amplifier34,35.

Possibilities for loading the induced trapping loop. Atoms can
be transferred to the induced trapping loop using an auxiliary
near-surface magnetic trap, as commonly done in other micro-
trapping geometries5. Following a slow variation of the trapping
parameters, the potential landscape is deformed and atoms can be
transported between regions separated by several hundreds of
microns. For example, a typical magnetic microtrap, created by a
set of conductors carrying DC currents and a uniform static field,
can initially hold the atoms above the centre of the trapping loop.
Subsequent modification of the current and applied fields
deforms the trap and places the atoms in a region of significant
influence of the induced ring trap. This procedure is
schematically shown in Fig. 6, where we plot contours of the
potential energy produced by the combination of a two-wire
magnetic trap (see figure caption) with the energy shift caused by
the AC field distribution. The figure shows four snapshots of a
sequence that transport atoms from a position above the centre of
the ring to the plane of the centre of the induced trapping region.
The sequence starts with a magnetic trap centred above the ring,
(r0¼ (0,0,z0)) (panel a), then, by adjusting the currents, the
amplitude of applied fields and the driving frequency, the trap
centre moves towards the plane of the ring, (r1¼ (0,0,0)) (panel
b). The loading scheme then proceeds to slowly increase the field
producing the induced ring trap and simultaneously reduce the
strength of the magnetic trap (panels c and d). To reduce atom
losses during the loading process, all parameters defining the
trapping potential should be selected in such a way that the trap
depth and frequencies are approximately constant through the
procedure. A similar sequence can be planned by replacing the
initial magnetic trap with a mirror-MOT (as in ref. 37), having
the advantage of providing a uniform distribution of atoms along
the trapping loop.

Discussion
In summary, we show that complex one-dimensional guides for
ultracold matter can be defined by inductive effects over metallic
and superconducting loops. A very flexible wave-guide shape is
possible as the guide simply follows the curves of a metal track
laid down as a loop on the surface of an atom-chip or carved into
it. For operation, the loop should receive a magnetic field that
oscillates near to resonance with the hyperfine splitting of the
atomic ground state of the atoms. The field induces an electric
current on the conducting track without the need of leading wires
that might introduce undesired asymmetries in the potential
landscape. The combined applied and induced fields form a
trapping structure for the atoms.

Our numerical investigations indicate that the experimental
realization of this type of trap is realistic with current technology,
predicting trapping frequencies varying from a few hundred Hz
to a few kHz. This allows applications such as exploring low-
dimensional looped traps for Bose-Einstein condensates, novel
quantum interference devices and multiply looped structures for
cold atom gyroscopes. Interestingly, our scheme can produce
overlapping trapping regions for two different hyperfine states,
which might be of practical interest for experiments with atomic
species where a low magnetic field Feshbach resonance is
available, such as in 6Li.

Methods
Current distribution in circular conductors. We evaluate the current distribution
in conducting loops with circular and square cross sections. The trapping config-
uration works in the regime of long-wavelength compared with the size of the loop,
which allows us to use quasi-static Maxwell equations coupled to constitutive
relations between the fields and the current (for example, Ohm’s law and London
equations)31. We use the open-source package FEMM38, which implements a
Finite-Element algorithm for magnetic problems, to calculate the current
distribution in metallic conductors. The corresponding total field distribution is
then employed to evaluate the trapping frequency as a function of the conductor
width in Fig. 5.

We also consider superconducting loops of Niobium and calculate its current
distribution, J(r). To do so, we adapted the procedure detailed in ref. 39 as follows:
First, as the frequency of the applied magnetic field is much smaller than the
superconducting gap, the current can be described by the London equation33:

JðrÞ ¼ � e2ns

m
AðrÞ ð5Þ

where m and e are the electron mass and charge, respectively, ns is the density of
superconducting electrons and the vector potential A satisfies the Coulomb gauge
r �A¼ 0. Second, the solution to quasi-static Maxwell equations for the magnetic
field provides us a second relation between the vector potential and the current
distribution:

AðrÞ ¼ AACðrÞþ
m0

4p

Z
V

dV 0
Jðr0Þ
j r� r0 j ð6Þ

where AAC is the vector potential corresponding to the applied field and the
integral is limited to the volume where the current is defined39.

Then, combining these two equations and considering circular loops with
homogeneous cross section, we obtain a relation between the applied flux of
magnetic field across sections of loops with radius r and the current distribution:

rBAC

2
f̂ ¼

Z
dV 0f̂0Jðr0; z0Þ m

e2ns
dðr� r0Þ þ m0

4p
1

j r� r0 j

� �
ð7Þ

in which we have used cylindrical coordinates. In equation (7) BAC is the amplitude
of the oscillating applied field, J(r0 , z0) is the current density at points (r0 , z0) within
the superconductor, f̂0 denotes a unitary vector along the azimuthal direction and
the integral is restricted to the volume of the superconducting loop. After
discretizing the superconductor cross section, we obtain an algebraic problem
relating the currents passing through finite cross sections of the conductor and the
applied flux. Finally, this set of equations is solved with a standard computing
package for linear algebra (LAPACK). A fully detailed description of this procedure
is shown in Supplementary Methods.
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