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��������: Induced pressure gradients are found to cause band broadening effects which 

are important to the performance of microfluidic devices such as capillary electrophoresis and 

capillary chromatography. An improved understanding of the underlying mechanisms involved 

in causing an induced pressure gradient in electroosmotic flows is presented. The analysis 

shows that the induced pressure distribution is the key to understanding the experimentally 

observed phenomena of leakage flows. A novel way of determining the static pressures at the 

inlet and outlet of microchannels is also presented that takes account of the pressure losses due 

to flow contraction and expansion. These commonly neglected pressure losses at the channel 

entrance and outlet are shown to be important in accurately describing the flow. The important 

parameters that define the effect of an induced pressure on the flows are discussed, which may 

facilitate the design of improved microfluidic devices. The present model clearly identifies the 

mechanism behind the experimentally observed leakage flows, which is further confirmed by 

numerical simulations. Not only can the leakage flow occur from the electric field free side 

channel to main channel, but also the fluid in the main channel can be attracted into the side 

channel by the induced pressure gradient. 
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Experimental techniques associated with electroosmotic flow (EOF) through micro channels 

have been widely applied, e.g. capillary electrophoresis [1 5] and capillary chromatography [6 

9]. The benefits of these microfluidic devices are the dramatic reduction of reagent 

consumption, analysis time and sample dispersive effects. In an ideal EOF, the velocity profile 

is plug like and the mean velocity is independent of the cross sectional area if the electric 

double layer is much smaller than the characteristic length scale of the channel. In a 

conventional pressure driven flow, the velocity profile is parabolic and the mean velocity 

depends on the cross sectional area of the channel. Therefore, an EOF offers significantly less 

deleterious dispersive effects than a pressure driven flow in a channel. With appropriate 

application of electric potentials, its valveless control of fluid flow is a favored high 

performance sample separation technique [10 13]. 

 

However, an EOF is difficult to control due to complex nature of surface composition, buffer 

characteristics and external electric fields [14]. Apart from these factors, the control of the EOF 

is also affected by fluid hydrodynamics. One problem that arises when using an EOF in 

channels with intersections is the contamination of the sample by the stationary liquid in the 

side channels. Leakage flows have been observed experimentally [1, 2, 10, 15, 16] from 

electrical field free side channels into the main streams where electric fields were applied. In 

these observations, the amount of leakage depended on the layout of the channels and it was 

attributed to hydrodynamic effects other than molecular diffusion. Because the side channel is 
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electric field free, the leakage flow must be driven by a pressure gradient. Understanding the 

pressure distribution generated along the primary flow field is therefore the key to explaining 

this experimentally observed phenomenon. However, measuring the pressure field at such 

small scales, without disturbing the flow field, is very challenging. Theoretical predictions and 

numerical simulations can therefore play an important role in tackling this issue and recent 

theoretical and numerical analysis of EOFs in channels [17 27] has been making headway. 

 

Previous simulations [20, 23] of a steady fluid flow in both straight and cross sectional 

channels have assumed that the pressures at the entrance and the outlet were at atmospheric 

conditions. In a straight channel as shown in Figure 1a, the pressure gradient along the flow 

direction is therefore assumed zero by many researchers [19, 20, 23, 28].  However, as pressure 

can be induced by the flow, the pressure gradient along the channel needs to be considered. 

The physical mechanism is that the viscous dissipation of the fluid will cause an irreversible 

pressure loss at the channel inlet and outlet where flow contraction and expansion occur, which 

leads to a pressure difference at the channel inlet and outlet despite there being no applied 

pressure in the reservoirs. Because the fluid is driven out of the channel by a pressure gradient, 

the “electroosmotic pump” needs to build up this amount of pressure in the channel. The 

schematic diagram of pressure distribution along a straight channel can be seen in Figure 1b. 

The induced pressure gradient is dependent on the pressure losses, which needs to be 

determined as boundary conditions in the simulation. As a result, the assumption of 

environmental pressure at both channel inlet and outlet may lead to significant error and 

underestimate dispersive effects. Furthermore, the simulations with such pressure boundary 

conditions for intersectional channels failed to predict the leakage flow from the side channel 

that had been observed experimentally. A more recent simulation [25] adopted a different set 
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of boundary conditions, where a zero pressure gradient was assumed at the channel inlet. This 

is physically insufficient because the fluid is drawn into the channel by a pressure gradient. 

 

These two typical types of boundary conditions used in both Patankar and Hu [20]
 
and Yang et 

al. [25] decoupled the flow at the channel entrance from the oncoming flow from the far field 

of the reservoirs. The error caused by these assumptions is not known [29], and the detected 

pressure rise by Yang et al. [25] may be attributed to the inaccuracy of the assumptions of 

boundary conditions. An understanding of the flow mechanism is therefore essential to 

establish an accurate and more physically representative numerical model.  

 

Our analysis leads us to believe that the observed leakage is due to the pressure distribution 

which is caused by the fluid motion initially from rest. In this paper, the analysis focuses on 

pressure losses at the channel inlet and outlet which helps us to establish the boundary 

conditions. As these boundary conditions are applied to the flow in a straight channel, the key 

parameters that affect the flow dispersion will be clearly identified. Afterwards, an EOF 

through a T shaped channel that has no externally applied pressure in the reservoirs is 

numerically analyzed where the key factors associated with the leakage flow in general will be 

discussed. 

 

In order to exclude other factors which affect the control of an EOF, we assume the zeta 

potential at the channel surface is ideally uniform and the electric double layer is negligibly 

smaller than the characteristic length scale of the channel. The fluid is assumed Newtonian and 

the flow is laminar. 
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The Navier Stokes equations can be employed to describe EOFs with a body force acting on 

the ions by the electrical field. The governing equations for an EOF are given by: 

�����������	
������: 

�=⋅∇ � ,           (1) 


�
	���
�	
������: 

��
�

+∇+−∇= 2�ρ �
��

�
,        (2) 

where � is the velocity; ρ, the fluid density; �,� the static pressure; �, the viscosity. � is the 

electrical force acting on fluid, which is given by [20]
 

)( φψρ +∇−= 	� ,          (3) 

where ρ	 is the electric charge density; ψ,�the electric potential due to the zeta potential at the 

wall; φ, the applied electric field.  

 

The applied electric field can be described by the Laplace equation, i.e. [20] 

02 =∇ φ .           (4) 

The local net charge density ρ	 can be given by [20] 

ερψ 	−=∇ 2 ,          (5) 

where ε is the electric permittivity of the solution. The classical Poisson Boltzmann equation  

is used to govern the distribution of the electric potential, ψ, as 

ψψ 22 �=∇ ,          (6) 

where � 1 is called the Debye length, which is used to describe the characteristic thickness of 

the double layer. Substituting Eq. [6] into Eq. [5], we get 

ψερ 2�	 −= .          (7) 
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The details and limitation of the adopted theory for EOFs can be referred to Hunter [30]. 
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In order to determine the flow field of an EOF, we need to solve equations [1 7] with proper 

boundary conditions at the channel inlet and outlet. Eq. [4] is independently solved for the 

applied electric field, φ. With ρ	 and ψ�determined by Eqs [6, 7], the electric force acting on 

the fluid is readily obtained by solving Eq. [3]. Afterwards, a standard Navier Stokes flow 

solver can be used to solve equations [1, 2] for the fluid velocity and pressure fields. However, 

the boundary conditions at the channel inlet and outlet have been an arguable issue for the 

simulation of microfluidic flows. For example, for a steady flow without imposed pressure on 

the reservoirs, Patankar and Hu [20] asserted the atmospheric pressure at the channel inlet and 

outlet. Recently, Yang et al. [25] assumed a zero pressure gradient in the channel longitudinal 

direction at the inlet. These boundary conditions effectively decoupled the flow at the entrance 

from the oncoming flow outside the channel. The error caused by these assumptions might be 

small for a pressure driven flow especially with high Reynolds number. However, for creeping 

flows through microchannels driven by an electrical field, the error may lead to significant 

inaccuracy in predicting flow behavior. Due to the importance of the pressure field to a 

microfluidic flow, the pressure drop from the far field to the entrance must be taken into 

account as well as the amount of pressure drop needed to drive the flow out of the channel to 

the reservoirs.  

 

If we solve Eqs [1 7] for a straight channel with two connected reservoirs (as shown in figure 

1), typical pressure contours at the channel inlet and outlet are given by figure 2 (for 

illustration purpose only). Here, we have used our own flow solver  � Thor 2.0 and the flow 
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solver of CFD ACE [31], which employ classical SIMPLE algorithms. Both solvers give the 

same answers for the creeping flows considered in this paper. The details of the SIMPLE 

algorithms are widely available, e.g. Ferziger and Perić [32]. Because the atmospheric pressure 

conditions can be applied at the free surface of the reservoirs, the error introduced by asserting 

boundary conditions at the channel inlet and outlet is avoided. However, computational cost is 

huge because the size of reservoirs is usually orders larger than the microchannel depth. We 

can see that there are flow development regimes at the channel inlet and outlet where the 

pressure distribution is not uniform in the � direction. However, the flow development length, 

��, is small in comparison to the channel length, �, for creeping flows. For a pressure driven 

creeping flow, the flow development length, ��, is 0.63�, where � is the thickness of channel 

[33]. Therefore, fully developed flow status is quickly established and the pressure becomes 

uniform in the � direction (outside of the electric double layer). If we can determine the 

pressure at the end of the flow development regime, the pressure boundary conditions at the 

channel inlet can be established where the pressure distribution in the � direction is uniform 

(see figure 2). This approach effectively sidesteps the problematical flow development regime 

but still captures the channel end effect on the channel main flow regime. If the prime interest 

is within the flow development regimes at the channel inlet and outlet, this approach is not 

appropriate. Otherwise, the pressure at the inlet can be determined as  

���� ��� �−= 0 ,          (8) 

where ��� is the pressure at the end of flow development  regime so that it is uniform in the � 

direction, and  

������ ��� δρ� += 2

2

1
,         (9) 

where ��� and ���δ  are the mean velocity and  the pressure loss at the entrance respectively. 

The first term on the right hand is the reversible kinetic energy which can be neglected for a 
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creeping flow.  The expression for the pressure loss ���δ depends on the channel geometry. For 

a creeping flow through a infinitely thin slit,  the total pressure loss due to flow contraction and 

expansion has been determined theroetically by Roscoe [34] 

�

�
������

�
π

δ
32

= ,          (10) 

where � is the mean velocity in the slit. Again, the inertial effect on the pressure loss is 

negligible. The pressure losses due to flow contraction and expansion through a slit are very 

similar to those at the channel inlet and outlet, so that Eq. [10] can be used to determine the 

pressure boundary conditions for a channel.  

 

Because we consider a flow through a long channel with small flow development length here 

(the boundary conditions at the inlet are to be established at the end of small flow development 

regime), apart from the pressure loss caused by flow contaction, the extra pressure loss due to 

friction with the channel wall and the extra pressure gain due to the work done by the electric 

force on fluid  have to be taken into account. However, since the flow development length is 

small (��=0.63��for a pressure driven creeping flow), the pressure loss, δ��, due to friction with 

the channel wall in this regime may be less significant than the pressure loss due to the flow 

contraction. Moreover, once the fluid enters the channel, the work done by the electric force on 

the fluid will build up a pressure, δ�	, which may offset the pressure loss in the flow 

development regime.  Therefore, we assume δ���δ�	=0 here, which may be a first order 

approximation and thorough investigation is undergoing. Since the flow is creeping and driven 

in and out by pressure gradients, the pressure loss at the channel inlet may be expected as the 

half of that given by Roscoe [34], i.e.  

���� �
�

�
�

π
δ

16
= .          (11) 
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When Reynolds number increases, the inertial effect becomes important and cannot be ignored.  

As Happel and Brenner [35] showed, the pressure loss is no longer linearly proportional to 

mean velocity once the Reynolds number is greater than 1.6. The typical Reynolds number in a 

microfluidic flow is less than 1.0, the inertial effect on the pressure loss can therefore be 

ignored in the present study.  

 

Similarly, the pressure at the channel outlet can be determined by 

������ ��� �+= 0 ,          (12) 

������ �
�

�
�

π
16

=� ,          (13) 

where ���� is the mean velocity at the outlet. Because the flow from the outlet to the far field 

down stream is driven by the pressure gradient which inevitably causes a pressure loss �����, 

the same amount of pressure has to be generated by the electrokinetic pump in order to allow 

the fluid move out of the channel to the down stream. Eqs [11, 13] could be very close 

approxiamtions for the pressure loss due to flow contraction and expansion at the channel inlet 

and outlet. 

 

Equations [8, 9, 11 13] can serve as pressure boundary conditions for an EOF at the channel 

inlet and outlet. Because the pressure is coupled with averaged velocities which are not known 

�� ������, iterations are needed to solve the pressure and velocity field. These boundary 

conditions can avoid huge computational cost of solving whole reserviors but still capture the 

flow characteristics such as induced pressure gradients. 
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As shown in figure 1a, the reservoirs are much larger than the microchannel, so that the flow 

can rapidly reach the steady state. Now we can apply above pressure boundary conditions to 

solve Eqs [1 7] for an EOF in the straight channel. With these boundary conditions, we can 

solve the fully developed flow regime in the channel. Therefore, the momentum Eq. [2] can be 

simplised as 

� direction: 

0
)(

2

2

=
∂
+∂

−
∂
∂

+
∂
∂

−
��

�

�

�
	

φψ
ρ� .        (14) 

� direction: 

0
)(
=

∂
+∂

−
∂
∂

−
��

�
	

φψ
ρ .         (15) 

Eqs [14] and [15] require 0=





∂
∂

∂
∂

�

�

�
 and 0=









∂
∂

∂
∂

�

�

�
,  the pressure field can therefore be 

expressed as 

( ) ( )�������� ++= 21, ,         (16) 

where �1 and �2 are constants. The local net charge density ρ	 decays rapidly within the eletric 

double layer. Becaue the electric double layer is assumed here very small in comparison to  the 

characteristic length scale of the channel, �, the gradient of pressure in the � direction can be 

neglected outside the electric double layer. Because ∂ψ/∂� is zero due to uniform distribution 

of zeta potential, substituting Eq. [16] into Eq. [14] leads to 

0
2

2

1 =
∂
∂

−
∂
∂

+−
��

�
� 	

φ
ρ� .         (17) 
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If there is no applied pressure at the reserviors, most common assumption is that �1 is zero. 

However, the irreversible viscous pressure losses occur at the channel inlet and outlet because 

of sudden flow contraction and expansion. The schematic diagram of pressure distribution 

along the central line of the channel from the far flow field of reserviors can be seen in figure 

1b. The electrokinetic forces act the same role as a conventional pump where this 

“electrokinetic pump” compensates not only the frictional kinetic energy loss along the channel 

but also the pressure losses at the channel inlet and outlet. Because of the existence of a 

pressure difference between the channel inlet and outlet, the axial velocity profile at the steady 

and fully developed regime becomes 

{ }2
2

10 41
82

1 �����
��

������ �

�������� �

�
� −−









−
−

−
∂
∂

=
��

εζφ
,     (18) 

where ζ0 is the�zeta potential at the surface and �=��. 

 

If the pressure gradient, �1, can be determined, the axial velocity profile can be readily 

expressed by Eq. [18]. This pressure gradient depends on pressure loss at both channel inlet 

and outlet due to flow contraction and expansion. For the flow in a straight channel considered 

here, ��� = ���� =� . Note, this averaged velocity includes not only electoosmotic velocity but 

also induced pressure driven velocity. Combining Eqs [8, 9, 11 13], the amount of pressure 

generated by the  “electrokinetic pump” is 

�
�

�
�

π
δ

32
≈ .          (19) 

If the channel is long enough that the entry flow developing length is considerably small, the 

pressure gradient along the pipe, i.e. �1, can be estimated by 

�
���

�
�

�
π

δ 32
1 ≈= .          (20) 
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From Eq. [18], it is readily shown that �1 can be neglected, only if  

21
0

8
�

�

�
>>

∂
∂

εζ
φ

.          (21) 

This equation is actually comparing the magnitude of the electroosmotic velocity and the 

maximum velocity due to the induced pressure gradient. At the condition that �1 is zero, the 

mean velocity � in a straight channel is 








−=

)2/cosh(

)2/sinh(2
10

��

�
�� .         (22) 

where 
�
εζφ 0

0
�

�
∂
∂

= . Because the electric double layer considered here is very small compared 

to channel height, �, � is very close to 0� . Substituting Eq. [20] into Eq. [21], a criterion is 

obtained to judge whether the induced pressure gradient can be neglected in the straight 

channel flow: 

1
4

<<=
�

�
�� π

,          (23) 

Eq. [23] clearly shows whether the pressure gradient can be neglected mainly depends on the 

aspect ratio of the channel length and width (�/�). 

 

For a creeping flow, the pressure loss is a linear function of velocity as shown in Eq. [19], 

therefore, we can integrate Eq. [18] to get the averaged velocity. With the aid of Eq. [20], we 

can determine the pressure gradient as 

 







−

∂
∂

+
=

)2/cosh(

)2/sinh(2
1

83

96 0

1
��

�

���
�

φ
π
εζ

.       (24) 

Therefore, the velocity profile in the fully developed flow regime can now readily be solved by 

Eqs. [18, 24]. The influence of �/� on the velocity profile can be seen in figures 3. It is shown 

that increasing the aspect ratio of �/�  is the most efficient way to minimise the flow 
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dispersion. We may recommend that the ratio of �/��should not be less than 100 in order to 

have an ideal plug like velocity profile. Short �/�� has a so called end effect to the velocity 

profiles, which has been experimentally confirmed [36]. Simply setting the pressure gradient to 

zero could lead to significant inaccuracy in numerical simulation results, especially for the 

channel with a small value of �/�. 

 

The induced pressure will decrease the flow rate. The volume flow rate without induced 

pressure is  








−

∂
∂

=







−

∂
∂

= ∫
− ������ ��

������ �

�
���

������ �

�������� �

�
!

��

��
2

22
1

2
1 00

2

2

0 �
εζφ

�
εζφ

.  (25) 

The volume flow rate reduction caused by the induced pressure is 

�
δ

12

3

1��
! = .           (26) 

Because the velocity due to induced pressure is very small compared to the electroosmotic 

velocity, the reduction rate can be estimated as  








−=

)2/cosh(

)2/sinh(2
1

3

2

0 ��

�
�

!

!
�

δ
.        (27) 

If the Debye length is negligibly small compared to �, then ��!! 3/2/ 0 ≈δ . Therefore ��  can 

also be used to estimate the reduction of the volume flow rate due to the induced pressure. The 

effect of �/��on�reduction of volume flow rate is shown in figure 4. It is shown that increasing 

�/� will reduce the flow reduction rate.  
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�
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Figure 1b shows, for an EOF, the pressure at the channel inlet is less than the reference 

pressure, �0 (which is the value at the far field of the reservoirs ), while at the outlet it is 
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greater than �0. Therefore, if this straight channel is connected by a side channel which has no 

imposed pressure (i.e. the pressure at the far field of the reservoir is also �0) and electric field 

free, the contagious flow will occur between the side channel and the main channel due to the 

induced pressure difference. The leakage flow will be expected from the side channel to the 

main channel if the intersection is closer to the inlet of main channel while it will be directed 

from the main channel to the side channel if the intersection is closer to the outlet of the main 

channel. Harrison et al. [2] and Fan and Harrison [15] reported that the leakage from the side 

channel to the main channel depends on the location of the intersection. They found noticeable 

amount of leakage when the intersection was close to the inlet of the main channel. No leakage 

from the side channel was detected when the intersection was close to the outlet of the main 

channel. In the latter case, we believe they would have detected the leakage actually from the 

main channel to the side channel. Because leakage flows are driven by pressure gradients, 

numerically analysis of the pressure distribution along the � and � axises of T channels is given 

below.  

 

Here, the leakage flow between the main and side channels of a T shaped channel layout, as 

shown in figure 5, will be tackled in general. The location of the intersection is �1 = �2, �1 = 2 

�2, and �1 =0.5 �2 respectively. The electric field potentials at the reserviors 1 and 2 are 100 

and 0 V. The side channels are electric field free. The uniform zeta potential is applied at the 

channel walls which is assumed  –0.1 V.  




For an EOF in a straight channel, the pressure gradient in the most of the flow field is constant 

and can be determined, which leads to the analytical solutions of the velocity profile. For the 

flow in a T channel, there is no analytical solution, numerical simulation is therefore adopted 

here. The numerical simulations are generally based on Eqs [1 7] with a set of boundary 
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conditions, which are essential components of the model. Non slip boundary conditions for the 

velocity are usually applied to the wall. Insulation boundary conditions at the reservoirs for 

potential ψ�and at the channel walls for external electric field φ are also applied [20].  

 

As discussed in the section 3, the pressure at the channel inlet and outlet is related to the 

averaged velocity, the channel thickness and the fluid viscosity. These pressure boundary 

conditions require the ratio of �/� to be sufficiently large, so that fully developed boundary 

conditions can be applied at the end of the flow development regime. From Eqs [8 13], the 

boundary conditions for T channel can therefore be obtained as  

Channel inlet at the reservoir 1:    ���
�

��"
�

� �
π
16

,0,0 0 −===
∂
∂

,  (28) 

Channel outlet at the reservoir 2 :  ����
�

��"
�

� �
π
16

,0,0 0 +===
∂
∂

,  (29) 

Channel inlet or outlet at the reservoir 3:  �"
�

���
�

" �
π
16

,0,0 0 ±===
∂
∂

, (30) 

where ��� , ����  and �"  are the mean velocities at the channel inlet and outlet, and side channel 

respectively. If the leakage flow is from the reservoir 3 to the main channel, then pressure at 

the inlet is smaller than reference pressure �0 (negative sign in Eq. [30]), otherwise the 

pressure at the side channel outlet is larger than �0 (positive sign in Eq. [30]). These boundary 

conditions reflect the physical mechanisms governing the flow and are needed in theoretical 

and numerical solution to the flow field. Since the velocity field needs to be determined and 

the pressure at the channel inlets and outlets are coupled with the averaged velocities, 

interations are needed to solve the flow field. Here, the flow and electric solvers of CFD ACE 

[31] are used to solve the flow and electric fields. 
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The simulation results in the straight channel have shown that the induced pressure may have 

negligible influence on the flow if �/� is large. However, the induced pressure will still cause 

unexpected experimental phenomenon. For example, Fan and Harrison [15] observed a leakage 

flow from the side channels, despite how small it is, which could be due to the induced 

pressure.  

 

In figures 6 8, comparisons of the pressure distribution along the � axis and the � axis between 

the models using the pressure boundary conditions as Patankar and Hu [20] where they 

assumed atmospheric pressure at the channel inlets and outlets and the present pressure 

boundary conditions as given by Eqs [28 30]. For the sake of clarity, we denote the model with 

boundary conditions of Patankar and Hu [20] as model 1 and the present model with pressure 

boundary conditions of Eqs [28 30] as model 2. In these simulations, Reynolds number is 

about 0.1, therefore the inertia effect is insignificant.  

 

In figure 6, the intersection is in the middle of the main channel, i.e. �1=�2. The induced 

pressure gradients both in the � axis and the � axis predicted by the model 2 are larger than the 

model 1. Because the pressure gradient in the side channel in figure 6b is very small, the 

leakage is negligible for both models. Since the flow in the intersection area is also partially 

driven by the pressure gradient, we can see from figure 6a that the pressure is built up before 

the fluid enters the intersection area and then it drops to allow the fluid to move into the 

channel again. The mechanism of the pressure change due to sudden flow expansion and 

contraction at the intersection area is the same as that at the channel inlets and outlets. The 

result shown in figure 6a is another evidence that the pressure at the inlets and outlets should 

be different to the reference pressure, �0. The pressure gradients in the intersection in the � 
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direction for both models are nearly the same because of nearly identical flow rates. This is 

further confirmed in the simulation results presented in figures 7 and 8.  

 

The difference between figures 7 and 8 is the location of intersection. �1 is 500 �m and �2 is 

1000 �m in figure 7 while they are 1000 and 500 �m respectively in figure 8. The different 

location of intersection leads to different leakage flow direction. Because of larger induced 

pressure gradients, pronounced leakages from the side channel to the main channel and "��	�

"	��� are predicted by the model 2 in figures 7b and 8b. Fan and Harrison [15] observed a 

leakage only from the side channel to the main channel where the intersection is closer to the 

entrance of the main channel. They reverse the EOF direction so that the intersection is closer 

to the outlet but they did not detect the leakage. From the result presented in figure 8, we 

expect a leakage flow from the main channel to the side channel to occur. The model 1 

significantly underpredicts or fails to predict the leakage.  

 

From figure 6b, we can see the pressure at the side channel  inlet is nearly the same as the 

reference pressure, �0, due to neligibly small amount of leakage (the intersection is in the 

middle of main channel). More pronounced pressure difference to �0 is found at the inlet of the 

side channel in both figures 7b and 8b, which is caused by larger amount of leakages. If we 

compare the magnitude of the pressure drops at the inlet or the outlet with those at the 

intersection area, where the pressure drops are caused by the same mechanism, the pressure 

drops at the channel inlet and outlet are larger which are shown in figures 6a, 7a and 8a. This 

may attribute to the fact that the one side of the intersection area is still the main channel wall. 

Therefore, the flow is not fully expanded or contracted in the intersection area. At the same 

time, the zeta potential at this wall still generates pressure which offsets some pressure loss. 
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Moreover, the length of the intersection is too short to allow the outflow to be fully developed, 

which may lead to a smaller pressure loss. 

 

If the contagious leakage from a side channel needs to be prevented, the position of the 

intersection should be designed to be closer to the outlet of the main channel. Alternatively,  it  

can be controlled by changing pressure at the side channel reservior, or applying an electric 

potential there [10]. In the present work, a two dimensional calculation is carried out in order 

to clearly identify the physical mechanism of a leakage flow. The precise prediction of  leakage 

will depend on actual geometry of channels.  

 

�����������


The induced pressure in EOFs through channels does exist, which may have significant effect 

on enhancing flow dispersion rate. The reduction of volume flow rate due to this induced 

pressure can only be ignored for channels with large aspect ratio, ���. Moreover, the pressure 

losses at the channel inlet and outlet, where the flow contracts and expands, are the key to 

understanding the leakage flow. The new boundary conditions at the channel inlet and outlet 

have been established which are capable of capturing the mechanism of the induced pressure 

gradient. The pressure distribution in a T shaped channel shows that the leakage flow can 

occur from the main channel to the side channel or "��	�"	���, depending on the location of the 

intersection. 
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Figure 1. Schematic diagram of a) a two dimensional microchannel; b) pressure dissitribution 

along the � axis of the channel. �0 is the reference pressure at the far field of the reserviors. 

The electroosmotic flow is from the reservoir 1 to the reservoir 2. 
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(a) 

 




 

 

(b) 

Figure 2.  Pressure contours and flow development length �� at a) the channel inlet and b) the 

channel outlet. Only small part of the reservoirs connected to the channel is shown. 
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Figure 3.  The effect of the  aspect ratio of length and width, i.e. �/�, on the axial velocity 

profile, The ratio of channel thickness, �, to the Debye length, � 1, ���= 500. 

 

 

Figure 4.  The effect of �/� on reduction of volume flow rate due to the induced pressure 

gradient, The ratio of channel thickness, �, to the Debye length, � 1, ���= 500. 
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Figure 5.  Schematic of the T shaped channel, �=30 �m, �=1500 �m and �3=500 �m. 
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Figure 6.   Pressure distribution along a) � axis b) �1axis. Model 1 uses the reference pressure, 

�0, for the pressure at the channel inlets and outlets, and Model 2 uses Eqs [28 30] for 

boundary conditions. The intersection is in the middle of main channel. 
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Figure 7.   Pressure distribution along a) � axis b) �1axis. Model 1 uses the reference pressure, 

�0, for the pressure at the channel inlets and outlets, and Model 2 uses Eqs [28 30] for 

boundary conditions. The intersection is close to the main channel inlet. 
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Figure 8.   Pressure distribution along a) � axis b) �1axis. Model 1 uses the reference pressure, 

�0, for the pressure at the channel inlets and outlets, and Model 2 uses Eqs [28 30] for 

boundary conditions. The intersection is close to the main channel outlet. 

 




