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For gas flows in microchannels, slip motion at the solid surface can occur even if the Mach
number is negligibly small. Since the Knudsen number of the gas flow in a long microchannel can
vary from 0 to 1.0 and the Navier-Stokes equations are not valid for Knudsen numbers beyond 0.1,
an alternative method which can be applicable to the entire flow regimes is highly desirable. Lattice
Boltzmann equation (LBE) approach has recently been expected to have such potential. However,
some hurdles need to be overcome before it can be applied to simulate rarefied gas flows. The first
major hurdle is to accurately model the gas molecule and wall surface interactions. In addition,
the Knudsen number needs to be clearly defined in terms of LBE properties to ensure that the
LBE simulation results can be checked against experimental measurements and other simulation
results. In this paper, the Maxwellian scattering kernel is adopted to address the gas molecule and
surface interactions with an accommodation coefficient (besides the Knudsen number) controlling
the amount of slip motion. The Knudsen number is derived consistent with the macroscopic property
based definition. The simulation results of the present LBE model are in quantitative agreement
with the established theory in the slip flow regime. In the transition flow regime, it captures the
Knudsen minimum phenomenon qualitatively. Therefore, the LBE can be a competitive method for
simulation of rarefied gas flows in microdevices.

PACS numbers: 05.10.-a, 47.45.-n, 47.60.+i

I. INTRODUCTION

The technology associated with Micro-Electro-
Mechanical Systems (MEMS) or Micro-Total Analysis
Systems (µTAS) has developed rapidly in the last decade
and is set to revolutionize many important scientific
areas. Of particular importance are chemical, biological
and clinical analyses, where miniaturised systems offer
the potential to significantly increase yields and reduce
process time and reagent consumption. For gas flows
in these devices, the quasi-equilibrium hypothesis,
which leads to the Navier-Stokes equations, may be
inappropriate. This is because the mean free path of the
gas molecules may be comparable to the characteristic
length scale of the microsystem. Recently, the LBE
method has been developed as an alternative numerical
scheme for fluid flow simulation [1–4], and it has also
simulated gas flow in a microchannel [5, 6]. The LBE
method usually solves model Boltzmann equations such
as Bhatnagar-Gross-Krook (BGK) model on a discrete
lattice [7, 8]. Its intrinsic kinetic nature makes it an
attractive method for microfluidic flows where both
microscopic and macroscopic behaviours are coupled.

Although gas flows in microsystems are usually creep-
ing so that they are nearly incompressible, the Knudsen
number can vary widely and readily exceed the Navier-
Stokes equation limit of 0.1. For practical applications,
only a few macroscopic properties such as viscosity and
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flow rate are of interest which can determine the bulk
motion characteristics. Therefore, Molecular Dynamics
(MD), Direct Simulation Monte Carlo method (DSMC)
and direct numerical simulation of the Boltzmann equa-
tion are too computationally expensive and impractical
for applications where the microscopic details are not re-
quired. Significant effort has been made to improve and
extend the validity of the Navier-Stokes equations beyond
Knudsen numbers of 0.1, or to construct complicated
constitutive laws involving high order terms of Knud-
sen number which leads to Burnett-type equations [9].
The LBE method has the potential to improve this situ-
ation because it is efficient comparable to Navier-Stokes
solvers and it can recover the Navier-Stokes equations. A
preliminary link between the LBE and the Burnett-type
equations has also been established [10]. In addition, the
continuum, slip and transition flow regimes may exist
together in microfluidic devices, e.g. a long microchan-
nel. Hybrid algorithms that couple DSMC and Navier-
Stokes methods have been tried to model these mixed
flow regimes [11]. However, large errors can arise from
inappropriate assumptions regarding, for example, the
velocity distribution for gas molecules at the matching
interface between two solutions [12]. Furthermore, these
hybrid algorithms entail intensive computational effort
for three-dimensional flow simulations. In principle, the
LBE is valid throughout these mixed flow regimes and
avoids any coupling problem. Consequently, the LBE
may be a better method for gas flows in microdevices,
particularly where mixed flow regimes are encountered.

He and Luo [13] and Abe [14] have demonstrated that
the LBE can be derived from the Boltzmann equation.
Shan and He [15] also show that the LBE is a special
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discrete velocity method of solving the Boltzmann equa-
tion. Although the above work did not produce new
LBE models, theoretical connection between the LBE
and the Boltzmann equation was established. Therefore,
the LBE model can be valid for rarefied gas flows pro-
vided the Mach number is small. Moreover, since the
standard BGK equation, a simplified model Boltzmann
equation, is able to simulate highly nonequilibrium gas
flows, the lattice BGK model should also be appilicable
to rarefied microflows despite that the model is only vali-
dated for small Knudsen numbers. Numerical validation
of LBE models against experimental data and well ac-
cepted DSMC results is needed for rarefied gas microflows
in various geometries.

LBE methods have been extensively applied to sim-
ulate incompressible fluid flows with no-slip boundary
condition at the wall. However, little has been done on
the simulation of gas flows in microchannels, which are
usually incompressible but tangentially slip at the wall.
In order to tackle these flows, we need to model the gas
molecule and solid surface interactions so that the slip
motion at the wall boundary can be determined. In ad-
dition, the Knudsen number should be defined in terms
of LBE properties that are consistent with the defini-
tion used in kinetic theory to ensure the comparability
of the results obtained experimentally, theoretically and
numerically.

II. MATHEMATICAL MODEL

For the sake of simplicity, the lattice BGK model is set
as an example [8]:

fi(x + δxi, t + δt) − fi(x, t) = −
1

τ
[fi(x, t) − feq

i (x, t)],

i = 0, 1, ...n (1)

where fi(x, t) is the density distribution function along
the i direction at the lattice site x at time t; δx is the
lattice length and δt is the time step; τ is the dimen-
sionless LBE relaxation time given by λ/δt where λ is
the relaxation time; feq

i is the local Maxwellian distribu-
tion function; the lattice velocity c, i.e. δx/δt, is chosen
to obey mass, momentum and energy conservation. The
density ρ and bulk velocity u can then be determined by
∑n

i=0 fi and
∑n

i=0 fici/ρ respectively. For square lattice
models, the LBE relaxation time τ can be related to the

kinematic viscosity ν by δx2

δt

(τ−0.5)
3 . The factor −0.5 is

the correction to make the LBE a second order method
for solving incompressible flows [4].

In kinetic theory, the viscosity is linearly proportional
to the mean free path, l, which is the mean distance a
molecule travels between two consecutive collisions. As
given by ref [16], ν = 1

2cl where the mean velocity of the

molecule c is
√

8kT
πm

(k is the Boltzmann constant, T is

the absolute temperature and m is the molecular mass).

Therefore, Knudsen number can be expressed by

Kn =
l

Hch

=
2ν

cHch

, (2)

where Hch is the channel height. Introducing a dimen-
sionless channel height H = Hch/δx, equation (2) be-
comes

Kn =
2ν

cHδx
. (3)

Since ν = δx2

δt

(τ−0.5)
3 and c = δx

δt
, equation (3) becomes

Kn =
2c(τ − 0.5)

3cH
. (4)

The lattice velocity c depends on the lattice model, e.g.

c =
√

3kT
m

for the d2q9 and d3q27 models, c =
√

2kT
m

for the d2q6 model and c = 2
√

kT
m

for the d2q7 model.

Consequently, equation (4) could be further simplified,
e.g. for the d2q9 or d3q27 lattice model:

Kn =

√

π

6

(τ − 0.5)

H
. (5)

Because the mean free path depends on microscopic
details of molecular interaction, especially the collision
frequency, the mean free path based Knudsen number
could be different in various models despite the gases
having the same macroscopic properties. In order to com-
pare the results obtained by various models, we need to
define the mean free path to be dependent only on the

macroscopic properties, e.g. l = µ
p

√

π
2

kT
m

, where µ is

the dynamic shear viscosity and p is the pressure. As a
result, the Knudsen number in the standard BGK model
given by equation (5) needs to be rescaled to

Kn =

√

8

3π

(τ − 0.5)

H
. (6)

From equation(6), we can see the relation among Kn, τ ,
and H can be exactly determined. Similarly, the Knud-
sen number for other lattice models can be obtained, for
example, the Knudsen numbers for the d2q6 and d2q7
LBE models can be given by

Kn =

{

4
3
√

π

(τ−0.5)
H

: d2q6
4
√

2
3
√

π

(τ−0.5)
H

: d2q7.

Nie et al. [5] gave Kn = α(τ−0.5)
Hρ

(α is a constant to

be determined numerically) and Lim et al. [6] asserted
Kn = τ

H
. In the present work, no free parameter is in

the model to be tuned to produce desirable simulation
results. Here, we need to emphasize that the Knudsen
number differs by a constant factor among various lattice
models.
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FIG. 1: Schematic diagram of gas surface interactions and
velocity directions of a 2D (d2q9) model in a microchannel,
where v

i is the incident velocity and v is the reflected velocity
of representative group of molecules. Here, n is the normal
direction and s refers to the specular reflection direction.

The most important issue for extending LBE models
to simulate rarefied flows is to model the boundary con-
ditions at the walls capturing the underlying physics of
gas molecule and surface interactions. The difference in
boundary conditions will significantly affect the simula-
tion results [17]. In order to solve the LBE, the dis-
tribution function of gas molecules f+ leaving the wall
surface requires to be related to the incident molecules
distribution function f− . Generally, a scattering kernel
is needed to determine f+ , and the details can be seen
in refs [18, 19]. The most widely applied kernel is the dif-
fusive scattering model which can be interpreted as that
the gas molecules lose all information of their state before
collisions and are reflected obeying the Maxwellian distri-
bution function. Recently, this diffusive scattering kernel
has been implemented into the LBE model and the nu-
merical results show good agreement with the analytical
solution of the Boltzmann equation for Kramer’s prob-
lem as the Knudsen number tends to zero [20]. However,
for microflows, the Knudsen number can vary widely and
gas surface interactions can be in-between diffusive and
specular reflections. Therefore, more general boundary
conditions are necessary for LBE models. Maxwell [21]
expanded the diffusive kernel to a partly diffusive, a, and
partly specular, (1-a) kernel. This accommodation coef-
ficient a is the most important parameter in describing
solid surface interaction with the gas molecules. It is
1.0 for diffusive reflection and 0 for specular reflection.
With the information of accommodation coefficient for
various surface conditions available in the literature, we
may establish a gas surface interaction model for the LBE
method with practical implication. Since the Maxwellian
scattering kernel has been applied and tested in solving
Boltzmann equations, we propose to implement this gas
surface interaction model and assess its effect on the sim-
ulation results.

A representative group of particles colliding with the
wall is shown in Fig. 1, the post collision direction is
usually in-between the normal direction n and the spec-
ular reflection direction s, which could be characterized
by the accommodation coefficient, a. If this Maxwellian
kernel is to be implemented into a LBE (d2q9) model, the
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FIG. 2: Comparison of the velocity profiles of the fully-
developed flows. The lines represent the results of Cercig-
nani second order slip model while the symbols represent the
simulation results of the present LBE model.

boundary condition at the upper wall can be expressed
by

f8(x, y, t + δt) = (1 − a)f5(x − δx, y, t),

f7(x, y, t + δt) = (1 − a)f6(x + δx, y, t),

f4(x, y, t + δt) = af5(x − δx, y, t) +

af6(x + δx, y, t) + f2(x, y, t). (7)

This implementation of gas molecule and wall collisions
is simple but captures the underlying physics, which is
contrast to the empirical bounce back rule. It can be
generalized to various geometric conditions and lattice
models. A similar boundary condition could be obtained
for the lower wall. Succi [17] has used a combination of
the bounce back rule and specular reflection to generate
slip effect at the wall. A reflection parameter is included
which has recently been connected to the accommodation
coefficient [22].

III. RESULTS AND DISCUSSION

Cercignani [23] used the BGK approximation and ob-
tained a second order slip model for rarefied gas flows. As
hard sphere gas has been generally accepted to be close
to real gas flows in microsystems, Hadjiconstantinou [24]
rescaled and improved the model for a hard sphere gas
by considering Knudsen layers effects:

u |wall= 1.1466l
∂u

∂n
|wall −0.31l2

∂2u

∂n2
|wall, (8)

where u is the slip velocity at the wall; n is the nor-
mal direction to the wall; l is the mean free path given

by µ
p

√

π
2

kT
m

; here diffusive reflection was assumed. In

the literature, the value of the second order slip coeffi-
cient, which is 0.31 in equation (8), varies widely. For
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FIG. 3: The effect of the accommodation coefficient a on the
slip motion where the flow is fully-developed with Kn=0.01.

example, it is 0.647 in ref [23]. In the flow regime with
Kn < 0.1, where the Navier-Stokes equation is valid, the
difference of the second slip coefficient has little effect
on flow prediction. The comparison between the present
LBE results and analytical solutions of the second or-
der slip model is shown in Fig. 2, where the velocity
is non-dimensionalized by the mean velocity. Excellent
agreement has been achieved especially at small Knudsen
number. The deviation starts at Kn = 0.25 where the
validity of the Navier-Stokes equation with second order
slip boundary condition is questionable. In the calcula-
tion, the gas flow is isothermal with Mach numbers well
below 0.1. Tests have been carried out with the lattice
number H of 21, 27 and 35 respectively and the numerical
results are found H independent. Along the channel, the
lattice number is fixed at 50H and the pressure boundary
condition is used.

For most LBE applications, the non-slip boundary con-
dition is usually imposed by the so-called bounce back
rule. When Kn increases, the bulk velocity is no longer
zero at the wall and the empirical bounce back rule may
not be valid. Lim et al. [6] used a specular reflection
model and captured the slip motion of fluid at the wall
for Knudsen numbers up to 0.155. However, a specular
reflection indicates that there is no friction in the tan-
gential direction, so that a plug-like bulk velocity in the
microchannels will appear. At Kn = 0.01 where the slip
starts, the impact of the accommodation coefficient on
the velocity profile is shown in Fig. 3. If the bounce back
collision is used, there is no slip motion at the wall while
the velocity profile is plug-like as expected if a specular
reflection model is assumed. With decreasing accommo-
dation coefficient a, we can see the slip at wall is increas-
ing. Therefore, an accurate determination of this coeffi-
cient is essential for LBE simulation results. Fortunately,
this coefficient for many surface conditions is available in

FIG. 4: Nondimensional flow rate as a function of the Knud-
sen number for fully developed flows. The data denoted by
the solid squares were reported by Ohwada et al. [26]. The
solid triangles represent the analytical solution of the Navier-
Stokes equation with Cercignani’s second order slip boundary
condition [23].

the literature, hence the proposed gas-surface interaction
model could promote the LBE model to be a design tool
for microsystems.

By applying the present boundary condition, we can
capture the famous Knudsen paradox (Knudsen mini-
mum) phenomenon. Toschi and Succi [25] have recently
independently reproduced the Knudsen paradox. Fig. 4
shows that the minimum mass flow rate occurs at Kn ≈
0.5, where the flow rate is nondimensionalized by the
flow rate at Kn = 0.1. Although the present LBE model
prediction is more accurate than the Cercignani second
order slip model at large Knudsen numbers, it starts to
differ from the results reported by Ohwada et al. [26] at
Kn ≈ 0.4. When Kn is large, equation (6) suggests that
either the relaxation time τ is large or the channel height
H is small. In simulation, H needs to be maintained at a
reasonable value for the resolution, the only way to have
a large Kn is to make τ large. Unfortunately, large τ
will introduce significant numerical error, which needs to
be tackled in order to extend the LBE model to simulate
flows covering a broad range of Knudsen number.

In summary, a slip boundary condition has been pro-
posed by adopting the Maxwellian scattering kernel to
describe gas surface interactions. The accommodation
coefficient has significant impact on the simulation re-
sults. The Knudsen number has been defined in terms of
the LBE properties to be consistent with the macroscopic
properties based definition commonly used in kinetic the-
ory. This work has demonstrated that the LBE model
is able to simulate isothermal gas flows in microchannels
with large Knudsen numbers. In the slip flow regime, the
present LBE model has achieved good agreement with
the established analytical solutions, and it also captures
the Knudsen minimum phenomenon qualitatively in the
transition flow regime. Therefore, we may conclude that



5

the LBE is a viable method to simulate rarefied gas flows
in microsystems. Finally, we need to emphasize that
the present work has only tackled isothermal rarefied gas
flows in the simple geometry. Further work is required
to extend current LBE models to be able to simulate
rarefied thermal flows in complex geometries.
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