Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Optimal heating control in a passive solar commercial building

Kummert, M. and Andre, P. and Nicolas, J. (2001) Optimal heating control in a passive solar commercial building. Solar Energy, 69. pp. 103-116. ISSN 0038-092X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A smart heating controller has a twofold objective: to save as much energy as possible while maintaining an acceptable comfort level in the building. Due to very large time constants in the building response, it has to anticipate internal and external disturbances. In the case of a passive solar commercial building, the need for anticipation is reinforced by important solar and internal gains. Indeed, large solar gains increase the energy savings potential but also the overheating risk. Optimal control theory presents an ideal formalism to solve this problem: its principle is to anticipate the building behaviour using a model and a forecasting of the disturbances in order to compute the control sequence that minimises a given cost function over the optimisation horizon. This cost function can combine comfort level and energy consumption. This paper presents the application of optimal control to auxiliary heating of a passive solar commercial building. Simulation-based and experimental results show that it can lead to significant energy savings while maintaining or improving the comfort level in this type of building.