Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Analysis of short-term solar radiation data

Vijayakumar, G. and Kummert, M. and Klein, S.A. and Beckman, W.A. (2005) Analysis of short-term solar radiation data. Solar Energy, 79 (5). pp. 495-504. ISSN 0038-092X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Solar radiation data are available for many locations on an hourly basis. Simulation studies of solar energy systems have generally used these hourly values to estimate long-term annual performance, although solar radiation can exhibit wide variations during an hour. Variations in solar radiation during an hour, such as on a minute basis, could result in inaccurate performance estimates for systems that respond quickly and non-linearly to solar radiation. In addition, diffuse fraction regressions and cumulative frequency distribution curves have been developed using hourly data and the accuracy of these regressions when applied to short-term radiation has not been established. The purpose of this research is to investigate the inaccuracies caused by using hourly rather than short-term (i.e., minute and 3 min) radiation data on the estimated performance of solar energy systems. The inaccuracies are determined by examination of the frequency distribution and diffuse fraction relationships for short-term solar radiation data as compared to existing regressions and by comparing calculated radiation on tilted surfaces and utilizability based on hourly and short-term radiation data.