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ABSTRACT 

Rain-wind induced vibration is an aeroelastic phenomenon that occurs on the 

inclined cables of cable-stayed bridges and arises due to the interaction between the 

unsteady wind loading and the formation of water rivulets on the cable surface. A new 

numerical method has been developed at the University of Strathclyde to simulate the 

influence of the external flow field on the rivulet dynamics and vice versa. The 

approach is to couple a Discrete Vortex Method solver to determine the external flow 

field and unsteady aerodynamic loading, and a pseudo-spectral solver based on 

lubrication theory to model the evolution and growth of the water rivulets on the cable 

surface under external loading.  Results of this coupled model are presented, to 

provide detailed information on the development of water rivulets and their interaction 

with the aerodynamic field. In particular, the effect of the initial water film thickness and 

the angle of attack in plane on the resulting rivulets are investigated. The results are 

consistent with previous full scale and experimental observations with rivulets forming 

on the upper surface of the cable only in configurations where rain-wind induced 
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vibration has been observed. Additionally, the thickness of the lower rivulet is found to 

be self-limiting in all configurations. The results demonstrate that the model can be 

used to enhance the understanding of the underlying physical mechanisms of rain-

wind-induced vibration.  

KEYWORDS : Rain-wind induced vibration; Cables; Computational wind 

engineering; Rivulet.  

1. INTRODUCTION 

Rain-Wind Induced Vibration (RWIV) is now accepted as a distinct aeroelastic 

phenomenon that can occur on the inclined cables of cable stayed bridges. The large 

amplitude oscillations this causes are widely thought to arise due to the three way 

interaction between unsteady aerodynamic loading, rivulets of rain water running down 

the surface of the cable and the structural dynamics of the cable.  

First formally reported by Hikami and Shiraishi (1988), who recorded the strong 

influence of rain on large amplitude cable oscillations during the construction period for 

the Meikonishi Bridge. Since this event there have been numerous observations and 

investigations of RWIV. Notable amongst these are those undertaken on the Erasmus 

Bridge by Geurts et al. (1998), the Fred Hartman Bridge by Zuo et al. (2008) and the 

Dongting Lake Bridge by Ni et al. (2007).  

In an attempt to gain a satisfactory understanding of the underlying physical 

mechanism of the instability, RWIV, has been the subject of a large amount of 

international research activity. These have utilized a variety of techniques and include, 

full scale investigations of RWIV events on bridges, as highlighted above (Zuo et al. 

2008; Ni et al. 2007) and a range of wind tunnel experiments to ascertain particular 

aspects of the phenomenon, notably Matsumoto et al. (2003), Flamand (1995), 

Verwiebe and Ruscheweyh (1998), Bosdogianni and Olivari (1996) and Gu and Du 

(2005). Although much progress has been made, due to the complexity of the coupled 
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interaction between the rain water, wind and cable, a complete understanding of this 

phenomenon is yet to be obtained.   

The data obtained from various researchers, thus far, has determined a range 

of conditions under which the RWIV phenomenon is most likely to occur. This can be 

summarised as typically being between wind speeds of 5 and 15 m/s, corresponding to 

Reynolds numbers, Re, of between 5×104 and 1.5×105 and reduced velocities UR of 

between 20 and 90, where Re is based on the wind speed normal to the cable and the 

cable diameter, and UR is defined by ܷோ ൌ ܷஶ ⁄ܦ݂  (Cosentino et al. 2003; Matsumoto 

et al. 1995).  

Moderate rainfall is required (Hikami and Shiraishi 1988) though it is difficult to 

ascertain a consistent definition of “moderate” rain from the published research. Indeed 

many studies have not measured exact rainfall or water flow rates. Furthermore on a 

number of occasions, vibrations have been identified as RWIV despite having occurred 

under dry conditions. It is postulated that due to this difference in the precipitation 

conditions, that these “dry” vibrations are due to a different but related physical 

phenomenon, such as vortex induced vibration at high reduced velocity (Matsumoto et 

al. 2001) or dry-inclined galloping (Macdonald and Larose, 2008). Zuo et al. (2008) also 

present analysis of full scale data that suggests that RWIV might be due to a vortex-

induced type of excitation that is different from the classical Karman vortex shedding. 

Using the angles of inclination in the cable pylon plane, α, and yaw angle, β, as 

displayed in the configuration of stay cable geometry in Fig. 1, it can be said that RWIV 

typically occurs in cables which descend in the windward direction, at yaw angles 

between 20° ≤  ≤ 60° (Cosentino et al. 2003; Flamand 1995), and at angles of 

inclination between 20° ≤  ≤ 45° (Hikami and Shiraishi 1988; Gu and Du 2005). 

Although vibrations have also been noted in near vertical hangers ( ≃ 90°) 

(Ruscheweyh and Verwiebe 1995) and cables which ascend in the windward direction 
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and Ruscheweyh 1998; Gu and Du 2005; Wang et al. 2005). Both classes indicate that 

it is the presence of the rivulet on the upper surface which is largely responsible for the 

vibration (Matsumoto et al. 1995), while the latter class also indicates that when free to 

do so, the rivulets oscillate circumferentially at the same frequency as that with which 

the cable vibrates. Differentiating between the effect of circumferential oscillation and 

rivulet position in the ‘artificial rivulet’ investigations has, however, proven more difficult 

and led to discrepancies in the literature. In particular Verwiebe and Ruscheweyh 

(1998) determined that the circumferential oscillation of the rivulet is a primary cause of 

RWIV, whereas Bosdogianni and Olivari (1996) suggest that it is rivulet location and 

not its profile or circumferential oscillation which initiates the response. Chen et al. 

(2013) present a set of detailed measurements of the development of rivulets from an 

artificial rainfall wind tunnel test. The experiments use an ultrasonic transmission 

thickness measurement system to provide a nonintrusive measurement of the rivulet 

profile, allowing a much higher resolution of the spatial and temporal variation of the 

rivulets.  

Several analytical models have also been developed to investigate RWIV. Most 

are loosely based on the work of Yamaguchi (1990), wherein the RWIV mechanism is 

modelled as a two-dimensional, multiple mass, multiple degree of freedom (DOF), 

spring mass damper system, with aerodynamic forces determined using a quasi-steady 

approximation. These analytical models share several common features, but also 

present distinct differences determined by the exact nature of the specific aspect under 

investigation, two such examples being a 2DOF model with a circumferentially movable 

rigid attachment representing the ‘artificial rivulet’ (Gu and Huang 2008), and a 4DOF 

three mass model to investigate the differences between laminar and turbulent flow on 

the cable-rivulet system response (Peil and Dreyer 2007). 

Despite all of this analytical work, however, computational models for RWIV are 

scarce due to the complexity of the problem and the need to couple models for the thin 
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film of rain water, the unsteady aerodynamic field, and the structural dynamics of the 

cable. To date, the majority of the numerical investigations of RWIV have instead 

focused on fixed rigid artificial rivulets, with 2D and 3D large eddy simulations (LES) 

examining the effect that static rivulets have on the overall flow field (Li and Gu 2006; 

Liu et al. 2007). That said, Lemaitre et al. (2007) presented a different approach which 

uses lubrication theory and the time averaged flow-field over a circular cylinder to 

ascertain the evolution of the rain water rivulets.  

Recent research at the University of Strathclyde has focused on developing a 

numerical model to investigate aspects of RWIV. The approach adopted couples a 

modified, pre-existing unsteady aerodynamic solver for the external aerodynamic flow 

field with a solver based on a thin-film model for the evolution and deformation of the 

water rivulets. The thin-film approach used for the rivulet model is similar to that used 

by Lemaitre et al. (2007). Details of the development and validation of the rivulet model 

along with results of the effect of various aerodynamic loadings on the rivulet evolution 

and growth are presented in detail in Robertson et al. (2010). Results from the fully 

coupled aerodynamic and thin film model are presented in Taylor and Robertson 

(2011), which provides a detailed discussion of the development of the water film under 

the action of unsteady aerodynamic loading, and highlight aspects of the results that 

may contribute to the physical mechanism of the aeroelastic phenomenon.   

The research presented in the current paper provides new results from the 

coupled solver for a range of configurations. In particular, the effect of varying film 

thickness on the rivulet evolution and the variation of angle of attack in plane is 

presented. The latter of these, the angle of attack in plane, , (defined in Appendix A) 

is a variable that is constructed such that the three-dimensionality of a yawed inclined 

cable can be represented in two-dimensions. The results presented herein provide 

further verification of the methodology used in the numerical model. It is anticipated 
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that the coupled model presented will provide useful information to help in the 

development of a better understanding of the underlying RWIV mechanism.  On-going 

and future research will be focussed on the development of a 3D solver for RWIV and 

also on investigating the effect of cable oscillation on the rivulet formulation and 

evolution. In particular, the effect of the low reduced frequency oscillation, 

characteristic of galloping type motion are currently under investigation and will be 

reported in the near future.  

 

NOMENCLATURE 

a amplitude of cable vibration 

B solid body in unsteady aerodynamic solver 

D diameter of cable / cylinder 

F flow field in unsteady aerodynamic solver 

f body oscillation frequency 

g acceleration due to gravity 

h thickness of water film on surface of cylinder 

i, j, k unit orthogonal vectors 

n, n unit vector and distance normal to body surface 

P pressure distribution 

R radius of cylinder  

Re Reynolds number   = UD/   

r position vector 

S surface of body in unsteady aerodynamic solver 
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s, s unit vector and distance tangential to body surface 

T shear distribution 

t time 

U, U velocity vector and magnitude  

UR reduced velocity ( = U∞/fD ) 

 cable inclination angle 

 cable yaw angle (angle of cable to wind direction) 

 surface tension of water 

 angle of attack in plane 

 damping ratio 

 angle around circumference of cylinder  

 dynamic viscosity of fluid 

 kinematic viscosity of fluid 

 density of fluid 

 vector potential and stream function 

 rotational velocity of solid body, vector and magnitude 

 vorticity vector and magnitude 

 

Subscripts 

∞ freestream; far field 

ac anti-clockwise around cylinder surface 
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eff effective value 

i denotes number of the body under consideration (for this study with a single 

body, will always ≡ 1) 

ic Denotes reference point for the body.  

p point within flow or on body surface.  

w water.  

0 initial value.  

 

 xx
xx





 .
tDt

D
  Material derivative of vector x 

 

2. COUPLED NUMERICAL MODEL 

The numerical approach used in the model for RWIV is to couple a modified 

version of an already existing unsteady aerodynamic solver for the external 

aerodynamic flow with a solver based on a thin-film model for the evolution and 

deformation of the water rivulets. Each model was separately developed and has been 

reported previously (Taylor and Vezza, 1999, 2001; Robertson et al., 2010), however 

brief details of each model and the approach used in the coupled solver are now 

presented.  

2.1. Aerodynamic Model 

The two-dimensional discrete vortex method used for this analysis is a modified 

version of the DIVEX code developed at the Universities of Strathclyde and Glasgow 

(Taylor and Vezza, 1999, 2001).  DIVEX has previously proven successful with 

unsteady, incompressible, highly separated flows such as those under investigation 

(Taylor and Vezza, 1999). For the RWIV phenomenon in particular, an extensive 
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investigation into the effects of artificial rivulets on the unsteady aerodynamic flow field, 

similar to experimental investigations (Matsumoto et al., 2007), has been successfully 

undertaken.  The results highlighted the importance of the location of the rivulet on the 

cylinder surface, and the potential for galloping instabilities for certain configurations 

(Taylor et al., 2010).  

The numerical technique utilised by vortex methods is based on the 

discretisation of the vorticity field rather than the velocity field, into a series of vortex 

particles (Taylor and Vezza, 1999; Lin et al., 1997).  These particles, of finite core size, 

each carry a certain amount of circulation, and are tracked throughout the flow field 

they collectively induce.  As such, the model does not require a calculation mesh 

providing a very different approach to more traditional grid based computational fluid 

dynamics methods.  One of the main advantages of vortex methods, is that their 

Lagrangian nature significantly reduces some of the problems associated with grid 

methods, such as numerical diffusion and difficulties in achieving resolution of small 

scale vortical structures in the flow.  A detailed review of the key fundamental aspects 

and numerical features of vortex methods is provided by Sarpkaya (1989).  

2.1.1. Mathematical Formulation 

Two dimensional incompressible viscous flow is governed by the vorticity-

stream function form of the continuity and Navier-Stokes equations (1) and (2) :  

Continuity equation : 

  2     (1) 

Vorticity transport equation : 

  ωωU
ω 2. 

 

t
   (2) 

where the vorticity vector, , is defined as the curl of the velocity (3) and  is a vector 

potential defined by (4) 
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kωUω  with   (3) 

kΨΨΨU  with0,   (4) 

The vorticity transport equation (2) defines the motion of vorticity in the flow due 

to convection and diffusion.  As the pressure field is not explicitly defined in (2), the 

variation of vorticity at a point in the flow is therefore influenced by the surrounding flow 

velocity and vorticity.   

The calculations are subject to the far field boundary conditions (5) and the no-

slip and no-penetration conditions at the surface of the body (6).   

  Sonor UU   (5) 

iii Sonor   UU   (6) 

The velocity at a point r on the surface or within body i is described by : 

 icpici rrΩUU    (7) 

where ric is a fixed reference point on the body.  This may also be represented in 

stream function form by  

ii Bbodyin22     (8) 

To enable the evaluation of the velocity influence on the flow due to the moving 

body, the solenoidal velocity field is also applied within body Bi. The solenoidal property 

of the velocity indicates that the stream function, i, is a solution of (4) and satisfies 

both the normal and tangential boundary conditions at the body surface. Hence, proper 

definition of the problem allows for only one of the normal and tangential boundary 

conditions surface to be explicitly applied.  In the current formulation, the normal 

component or no-penetration condition is used as the boundary condition and the 

tangential, no-slip condition is implicitly satisfied due to the representation of the 

internal kinematics of each solid body.   
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The relationship between the velocity and the vorticity is derived by the 

application of Green's Theorem to (1) for the flow region, F, and to (8) for the body 

region, Bi, combined through the boundary conditions (5) and (6).  From this, the 

velocity field is calculated using the Biot-Savart law, which expresses the velocity in 

terms of the vorticity field.  For a point p in the flow field, outside the solid region, the 

velocity is given by :  

   










 

iB i

p

p
iF

p

p
p dBdFUU

22
2

2

1

rr

rrk

rr

rrk



  (9) 

where the first term on the RHS represents the freestream velocity influence on the 

velocity at point p and the second term represents the influence of the vorticity in the 

flow field. The third term on the RHS is the induced velocity at point p by a velocity field 

with constant vorticity 2i, occupying the solid region Bi. This integral can be 

transformed into a surface integral along the boundary of the body, Si, rather than an 

area integral (with respect to the body area dBi), which enables a simplified evaluation 

of the moving boundary condition. This contribution to the velocity is due to the 

rotational motion of the body and is zero for the stationary objects considered in the 

present investigation.  

The pressure distribution on the body surface can be evaluated by integrating 

the pressure gradient along the body contour.  The pressure gradient at a point on the 

body surface is given by equation (10) 

   
nDt

D

Dt

D

s

P
cc

c






 


2...

1
rrsrrn

U
s   (10) 

where s and n are the tangential and normal vectors to the body surface. The first 

three terms on the RHS of (10) are due to the body motion and respectively represent 

the surface tangential components of the body reference point acceleration, the 

rotational acceleration and the centripetal acceleration.  The final term is the negative 

rate of vorticity creation at the body surface and is calculated from the vorticity 
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angle from the windward (left-hand) horizontal,  (0° ≤  ≤ 360°, Fig. 3) and time t.  

Using thin film theory, the evolution equation for the water thickness on the cylinder 

surface, h(, t), is given by  

  0
2

cos
3

1 2
3

3























 


 R

Th
h

R

P
hh

R
g

R
ht  ,  (11) 

where the subscripts denote differentiation.  The full derivation of this evolution 

equation (11), along with verification of the approach, is given in Robertson et al. 

(2010).  This equation is to be solved subject to an initial condition of the form h(, 0) = 

h0(), where h0() is the initial thickness of the water film.  For the present work an 

initially uniform film thickness, h0 = constant, has been used throughout and the film is 

allowed to evolve according to (11), to investigate the development of two-dimensional 

‘rivulets’.  This evolution equation (11) is consistent with the corresponding equation 

given by Lemaitre et al. (2007) in the case of flow on a static cylinder and with an 

earlier equation (Reisfeld and Bankoff, 1992) for the case without aerodynamic loading.  

Given the nature of the problem, the same assumptions regarding the thin film and the 

boundary conditions were made here as were made in Lemaitre et al. (2007), and so 

the evolution equation (11) is essentially the same.  However, unlike in the previous 

work, we present (11) in a dimensional rather than non-dimensional format, this being 

done to facilitate the coupling to the unsteady aerodynamic solver.  Additionally, the 

results presented by Lemaitre et al. (2007) used constant aerodynamic loading rather 

than the time varying fully coupled approach utilised in the current research.  

As the evolution equation (11) is a fourth order, non-linear, non-constant 

coefficient partial differential equation, it cannot, in general, be solved analytically.  

Therefore, a pseudo-spectral (or collocation) method solver using an N-point Fourier 

spectral mode in space and a fourth order Adams–Bashforth time-marching algorithm 

was constructed.  This numerical method was chosen specifically because of the 
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periodic, continuous nature of the problem over the interval [0°, 360°) and the rapid 

rate of convergence it provides to the solution, given the presumed smoothness of the 

final result.  The development of the numerical model and the results of a detailed 

validation and verification study investigating the effects of a static aerodynamic field 

on the rivulet evolution are presented in Robertson et al. (2010).  

2.3. Coupled Numerical Solver 

The unsteady aerodynamic solver, and the pseudo-spectral method solver for 

the water rivulet have been combined to form a coupled solver capable of predicting 

rivulet formation and evolution subject to an external aerodynamic field which they in 

turn influence.  A flowchart displaying the basic operation of the coupled solver is 

displayed in Fig. 4, where DVM denotes the discrete vortex method aerodynamic 

solver.  Experimental studies which consider the evolution of ‘natural’ rivulets have 

generally concentrated on ascertaining the conditions under which RWIV occurs and 

not on the exact form of these rivulets (Verwiebe and Ruscheweyh, 1998; Gu and Du, 

2005; Flamand, 1995), though recent studies are beginning to provide more detailed 

information on the rivulet dynamics (Cosentino et al., 2003; Li et al., 2010).  Therefore 

specific data against which to quantitatively verify either the coupled solver, or the 

results it predicts is unavailable, although qualitative comparison with experimental 

observations is possible.   
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Dynamic viscosity of water, w 1.002 × 10-3 Ns/m 

Surface tension of water,  72 × 10-3 N/m 

Density of air,  1.19 kg/m3

Dynamic viscosity of air,  1.82 × 10-5 Ns/m 

Table 1.  Values of the standard parameters used in the numerical calculation. 

 

3. RESULTS FROM COUPLED SOLVER 

3.1. Full Loading.   

Given that the coupled solver is two-dimensional and that the governing 

evolution equation (11) was derived for a horizontal cylinder, the full loading case to be 

examined here essentially represents the physical loading on a horizontal cable 

perpendicular to the incoming flow, i.e.  =  = 0° (Fig. 1).  A more complete discussion 

of the results from the coupled solver, for various loading cases is provided in Taylor 

and Robertson (2011) and only a summary of the full loading case for the horizontal 

cable presented herein.  The evolutionary profile of film thickness around the surface of 

the cable is presented in Figs. 5 and 6, where Fig. 6 shows only the region close to the 

upper rivulet.  
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Figure 5.  Numerical prediction of temporal evolution of film thickness in real 

time, under full loading. 

 

Figure 6.  Numerical prediction of temporal evolution of film thickness close to 

the region of the upper rivulet in real time, under full loading. 

 

The most noticeable feature of this result is the asymmetry of the rivulet 

evolution due to the effect of gravity, with very different rivulet profiles on the upper (0° 

– 180°) and lower (180° to 360°) surfaces of the cable.  Compared to the results when 

gravity was omitted from the calculation (Taylor and Robertson, 2011) it is concluded 

that gravity has a stronger influence than either of the loadings due to the external 

aerodynamic field (pressure and shear), although these do still play a role.  Whilst a 

distinct rivulet can be seen to form on the lower surface at approximately the lowest 

point on the cylinder,  ≃ 277°, the temporal evolution of the upper surface is more 

complicated and necessitates more detailed review.  These two surfaces are therefore 

discussed separately.  

The thickness of this lower rivulet is self-limiting, with a value of approximately 

0.68 × 10−3 m, which is consistent with previous results (Taylor and Robertson, 2011) 

and is quantitatively in-line with the upper rivulet measured experimentally (Cosentino 
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et al., 2003).  Furthermore as this rivulet forms on the lower surface, due to the effect of 

gravity this evolves more quickly than the previous aerodynamic only (no gravity) 

loading combinations examined (Taylor and Robertson, 2011).  The location of this 

rivulet as defined by the point of maximum thickness has likewise moved leeward 

(towards the lowest point) due to the effect of gravity in comparison with the 

aerodynamic only cases.  

While the lower rivulet is easy to distinguish, the evolution of the thin film on the 

upper surface is considerably more complicated.  A small rivulet does periodically form 

on the upper surface at approximately  = 67° (Figs. 5 and 6), before moving away in a 

‘rippling’ motion due to the combination of aerodynamic and gravitational loading.  A 

similar effect of rivulets periodically forming and moving around the cable surface is 

observed in recent wind tunnel experiments presented in Li et al. (2010) and Chen et 

al. (2013).  The location at which rivulets are forming,  = 67°, is in the region 

previously determined to be danger for RWIV.  From the artificial rivulets studies 

(Taylor et al., 2010; Matsumoto et al., 2007), this location is within the range of 

negative lift slope and may increase susceptibility to galloping and likewise, previous 

experimental studies have shown that rivulets in this location cause the largest cable 

response (Bosdogianni and Olivari, 1996; Gu and Du, 2005).   

The thickness and location of this rivulet vary with time due to the rippling effect 

and is illustrated in Fig. 7 by tracking the variation in film thickness at  = 67°. By 

considering the time difference between the peaks in Fig. 7, also from spectral 

analysis, the period of formation of rivulets at  = 67° can be determined as 

approximately 0.23 s (as previously reported in Taylor and Robertson, 2011 and 

Robertson, 2008). Interestingly this period is three times the period of Karman vortex 

shedding for this body, which is the same value that was found by Matsumoto et al. 

(2001) to play an important role in a high reduced velocity vortex-induced vibration 
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studies examining initial film thickness on the cable surface, h0, and the angle of attack 

in the plane normal to the cable axis, , are presented and discussed herein. 

3.2.1. Initial Thickness of Thin Film 

A range of initial film thicknesses between 0.1×10−3 m ≤ h0 ≤ 0.35×10−3 m were 

investigated to investigate the effect of thinner and thicker initial film thickness 

compared to the results presented in section 3.1 for an initial thickness of 0.25×10−3 m.  

As discussed earlier, the numerical simulations assume the cable is fully wetted with a 

uniform initial thickness of water. This is a simplifying assumption that has enabled a 

practical model to be successfully developed. In experiments where water is sprayed 

onto the cable and in full scale observations, the cable is usually not fully wetted and 

limited information is generally only available for the rivulet location not thickness. 

However, to ensure the simulations are a reasonable comparison with experiments, as 

indicated above, the datum initial water thickness was set to be 0.25×10−3 m which is 

comparable to the “base carpet” thickness of 0.2 − 0.25×10−3 m as identified and 

measured experimentally by Cosentino et al. (2003). The range of film thicknesses 

studied in this research were chosen to be 0.1×10−3 m smaller and larger than this 

‘base carpet’.  For consistency, in each case the initial profile was set to be uniform 

thickness, h(θ, 0) = h0(θ) = constant. 
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The temporal evolution of the normalised and actual film thickness of the lower 

surface rivulet are presented in Figs 8 and 9 respectively. In each case, the normalised 

film thickness is with respect to the initial value, h0.  As the results in Fig. 8 illustrate, a 

distinct rivulet of self-limiting thickness does form in each case. Additionally, the lower 

rivulet forms at approximately the same mean location for each of the initial film 

thicknesses investigated,   277°.  From Fig. 8, the time taken for the film to reach a 

self-limiting thickness varies, with the thicker films growing faster than thinner films. 

From Robertson et al. (2010), using thin film theory the velocity of the water film normal 

to the cable surface, in the absence of surface tension is given by  

  



 ˆ

2ˆcosˆ2
ˆ2

1
ˆ 2 Ty

yhypgu x    (12) 

where the subscripts denote differentiation.  At a particular thickness, the normal 

velocity of the free surface û , can be derived by substituting the present thickness h 

into equation (12).  

 



 ˆ

ˆcosˆ2
ˆ2

1
ˆ 2 Th

hpgu x    (13) 

From Eq (13), it can be clearly seen that the normal velocity of the film, û, and 

hence the growth rate of the terms corresponding to pressure and gravitational terms 

loading increases in proportion to the present free surface thickness squared (P and g 

∝ h2), whereas the shear term only does so in direct proportion to the free surface 

thickness (T ∝ h).  As the normal velocity increases with film thickness, equation (13) 

clarifies why initially thicker films grow quicker than thinner films and why the rate of 

h/h0 for any film increases with time (Fig. 8).  Also, as the film becomes thicker, the 

growth rate (the gradient dh/dt ) of that rivulet increases as can be seen in Fig. 9.  

Interestingly the maximum self-limiting thickness of the lower rivulet was almost 

independent of the initial thickness of film.  Figure 9 illustrates this for the first 0.75 s of 

evolution which is sufficient for all cases except the thinnest film, h0 = 0.1×10−3 m, to 
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reach this state, which although not explicitly shown does so at approximately t = 1.3 s.  

The limiting thickness value of h  0.67×10−3 m agrees well with those thicknesses 

obtained from the combinations of loading previously examined (Section 3.1, Taylor 

and Robertson, 2011), indicating that for the present conditions there was a maximum 

thickness of rivulet which could form before aerodynamic loading restricted further 

growth.  The exact reasons for the particular limit are unclear as is whether or not this 

phenomenon is real or the result of one of the assumptions made herein.  That said 

however, an examination of different cylinder radii did result in different maximum 

thicknesses in each case, this though was not the focus of the present investigation 

and is not reported here.  Intuitively it makes sense that such a limit would exist for film 

thickness, just as a limiting wind speed for the actual formation of rivulets within RWIV 

has been previously reported (Cosentino et al., 2003; Matsumoto et al., 1992; 

Flamand, 1995; Verwiebe and Ruscheweyh, 1998).  That the present value 

qualitatively matches that found experimentally by Cosentino et al. (2003) for the same 

diameter of cable provides some verification for the modelling approach used.  

Because of the consistency of this self-limiting thickness and the condition for 

zero fluid flux, i.e. conservation of thin film area modelled, the actual evolutionary 

profiles once this limit is achieved are significantly different for the various initial film 

thicknesses studied.  While the lower rivulets all have the same maximum thickness 

those which evolve from thinner films (smaller h0) have significantly smaller base 

widths than those which form from thicker fluids (larger h0).  Figure 10 illustrates this at 

t = 1.4 s by which time all lower rivulets have ceased to increase in thickness.  This 

figure also highlights that a rivulet was found to form on the upper surface (0°<<180°) 

for all initial thicknesses of film considered.  While the actual thickness and location of 

this varied as it moved windward to join the lower rivulet, the mean location at which 

this formed was approximately constant, matching the base case of h0 = 0.25×10−3 m 
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case with larger initial h0. An additional aspect that is also noticeable in Figs. 11 and 12 

is that the characteristic “ripples” arising from the upper rivulet are only present in the 

case with the thicker initial film, h0 = 0.3×10−3 m. These ripples may eventually arise on 

the thinnest film thickness case, but due to the slower growth rate, would take much 

longer to form. The initial film thickness is therefore likely to influence the frequency at 

which these ripples form and drain towards the windward side of the cylinder. Earlier 

work noted the frequency of these ripples being similar to the frequency at which an 

enhanced Karman Vortex arises due to interactions with the axial vortex (Taylor and 

Robertson, 2011; Matsumoto et al., 2001). A moderate initial thickness of water is 

required for clear ripples to form, and it could be interpreted that this is consistent with 

full scale observations that “moderate” rainfall is required for RWIV to occur (Hikami 

and Shiraishi 1988). However, much more investigation is required before this can be 

accepted as a firm conclusion from these results.  

 

Figure 11.  Numerical prediction of temporal evolution of film thickness in real 

time, with initial film thickness of 0.15×10-3 m.  Variation of h with  and t, where  is 

measured clockwise from the windward horizontal. 
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Figure 12.  Numerical prediction of temporal evolution of film thickness in real 

time, with initial film thickness of 0.30×10-3 m.  Variation of h with  and t, where  is 

measured clockwise from the windward horizontal. 

 

3.2.2. Angle of Attack in Plane 

The angle of attack in plane  (Appendix A) is a variable constructed such that 

the three-dimensionality of a yawed inclined cable can be represented in two 

dimensions (Fig. 13).  If we assume the incident wind speed in plane Ueff and effective 

gravity geff remain fixed at the values for the full three-dimensional system (U and g 

respectively), as  = f(, ) this allows a range of angles of inclination and yaw to be 

examined by the variation of a single parameter.  Using the typical limiting ranges for 

RWIV of 20° <  < 45° and 20° <  < 60° outlined in section 1, a range of angles of 

attack in plane to be investigated could be established (7° <  < 51°).  To investigate 

the effect of varying angle of attack in plane, cases at 5° intervals of the range 10° <  

< 50° were thus investigated.  
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Figure 14.  Numerical prediction of temporal evolution of film thickness in real 

time, under full loading conditions at  = 20°.  Variation of h with  and t, where  is 

measured clockwise from the windward horizontal. 

 

Figure 15.  Numerical prediction of temporal evolution of film thickness close to 

the region of the upper rivulet in real time, under full loading conditions at  = 20°.  

Variation of h with  and t, where  is measured clockwise from the windward 

horizontal. 
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 = 20° case (Fig. 15), there is a clear ridge of water at about 80° around the cylinder, 

and some clear rivulets forming, though much less regular. Thus showing the rivulet 

formation is becoming less prominent but is still apparent. For the  = 30° case (Fig. 

19) whilst there still is liquid moving down the windward face of the cylinder ( 

decreasing from around 70°) or “ripples”, there is a much less distinct pattern of rivulet 

formation, and the water thickness is generally much lower. The change between the 

three cases demonstrate that there is clear rivulet formation, moving down the 

windward face at low angle of attack in plane , moving to a case where there is no 

clear pattern for  = 30°. 

This may indicate a possible connection to the previous result (Fig. 18), as 

when no upper rivulet formed no oscillation of the lower rivulet could be detected.  The 

present study could not establish such a link however.  That said, the period of ripple 

formation was found to be constant at 0.23 ± 0.02 s in all cases which agrees well with 

the base case ( = 0°), as did the time interval between formation and these ripples 

joining the lower rivulet.  However, this periodic phenomenon was found to be 

influenced by initial film thickness and thus, the effect of varying both initial thickness 

and angle of attack in plane is yet to be investigated.  

 



35 
 

Figure 19.  Numerical prediction of temporal evolution of film thickness close to 

the region of the upper rivulet in real time, under full loading conditions at  = 30°. 

Variation of h with  and t where  is measured clockwise from the windward 

horizontal. 

 

As outlined earlier, the upper rivulet is thought to play a key role in RWIV 

mechanism.  As such, the fact that these upper rivulets were only found to occur at  ≤ 

30° under the conditions examined herein, was thought to be an important result.  

Quantitatively this result is also in excellent agreement with results from experiments 

previously reported (Hikami and Shiraishi (1988); Flamand (1995); Gu and Du (2005); 

Zhan et al. (2008)).  If the cable geometries and orientations under which RWIV has 

previously been detected in these prior experiments are transformed into the present 

notation, as presented in Table 2, oscillation was not found to occur at values 

significantly greater than  = 35°, consistent with the present results. 

Experiment Inclination, () Yaw, () Angle in plane, () 

Hikami and 

Shiraishi (1988) 
45° 45° 35.3° 

Flamand (1995) 25° 30° 13.7° 

Gu and Du (2005) 30° - 35° 25° - 40° 13.1° - 25.7° 

Zhan et al. (2008) 30° 35° 19.3° 

Table 2.  Angles of inclination, yaw and angle of attack in plane at which 

previous experiments by Hikami and Shiraishi (1988), Flamand (1995), Gu and Du 

(2005) and Zhan et al. (2008) determined RWIV. 

 

Furthermore in cases where an oscillating rivulet did form on the upper surface, 

while the mean maximum thickness of this rivulet ത݄ did not change significantly for  ≤ 
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25°, the mean angle ̅ߠ at which the rivulets originally formed did.  This angle varied in 

such a manner as to maintain an almost constant angle between the location at which 

the rivulet originally formed and the stagnation point of the incident flow, ߛఏ ൅  as ,ߠ̅

indicated in Table 3.  The indication from this result is that the location of this upper 

rivulet is a direct consequence of the aerodynamic loading (Fig. 17).  Table 3 also 

highlights the independence of mean maximum thickness of this upper rivulet with 

angle of attack in plane as well as the relation between  and ̅ߠ. The latter of which is 

in good qualitative agreement with the experimental results of Bosdogianni and Olivari 

(1996) discussed earlier.  

Angle of attack in 

plane, . 

Mean rivulet 

thickness, ത݄ 

Mean location of 

original rivulet 

formation, ̅ߠ 

Rivulet angle from 

stagnation, ߛఏ ൅  ߠ̅

0° 0.30 mm 67° 67° 

10° 0.31 mm 58° 68° 

15° 0.30 mm 52° 67° 

20° 0.29 mm 46° 66° 

25° 0.28 mm 40° 65° 

Table 3.  Comparison of the mean maximum upper rivulet thickness ത݄, the 

mean location of formation ̅ߠ and the angle of formation from stagnation ߛఏ ൅  with ߠ̅

angle of attack in plane ߛఏ. 

 

Spectral analysis of the lift coefficient for the various angle of attack in plane 

indicate that for angles < 30°, whilst there is a peak frequency corresponding to the 

Strouhal frequency, the magnitude is significantly lower than for the cases at angles ≥ 

30°.  Results of the spectral analysis for the  = 10°, 20° 30° and 35° cases are 

illustrated in Fig. 20. In the 10° and 20° cases, both indicate the main frequency 
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component of the lift coefficient is close to the expected Strouhal frequency of 0.2, with 

peak PSD values of 0.318 and 0.265 respectively.  However, each signal demonstrates 

some characteristics of a broad band frequency response indicating that vortex 

shedding is not a dominant feature of the flow.  In contrast, there is a much more 

dominant peak at a reduced frequency of 0.212 for the 30° case, with the peak value of 

the spectral density significantly larger than the other two cases (1.360 for the 30° case 

and 1.298 for the 35° case).  In the 20° case the upper rivulet is much more discernible 

compared to the 30° case (Figs. 15 and 19) and despite the thickness still being very 

small, it will have a more significant effect on the external aerodynamic flow field.  The 

presence of the rivulet in the 20° case will act as a trip on the external flow and will 

deflect the separated shear layer further from the centre line of the cylinder, thus 

causing a wider downstream wake.  The wider wake reduces the interaction between 

the shear layers on either side of the cylinder, thus affecting the characteristics of the 

Karman vortex shedding.  As there still is a significant frequency response at the 

Strouhal frequency, it cannot be stated that vortex shedding has been completely 

suppressed, but it has been greatly reduced. In contrast, this upper rivulet is not 

present in the 30 or 35° cases (Fig. 19), thus having a much lesser effect on the shear 

layer interaction and the Karman vortex shedding.   

Previous research has indicated that when RWIV occurs, it does so at a much 

lower frequency than VIV and not in direct relation to the incident wind speed (Zuo et 

al. (2008); Hikami and Shiraishi (1988); Matsumoto et al. (2001)).  Additionally, it has 

been reported by Matsumoto et al. (2001 and 2007), that suppression of vortex 

shedding is a characteristic necessary for galloping type oscillations.  Previous 

research has also indicated that rivulets forming at around 67° from the stagnation 

means the cable is likely to be more susceptible to galloping type oscillations (Taylor et 

al., 2010; Matsumoto et al., 2007).  As discussed above, the 20° case is in the region of 

yaw and inclination angles that are most likely to exhibit the RWIV phenomenon. The 
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Varying the initial thickness of the water film modified the growth rate of the 

lower rivulet, with the quickest growth rate found for the thickest initial thickness. 

However, the lower rivulet was again found to have a self-limiting thickness, the value 

of which was approximately the same in each case. The upper rivulet was found to 

form in each case but at very different growth rates. In addition, the presence and 

frequency of the rippling effect of the upper rivulet was dependent on the thickness, 

being more prevalent once the initial thickness was above about 0.25×10-3 m, 

consistent with previous observations that “moderate” rain is required for RWIV.  

Varying the angle of attack in plane  allowed the three-dimensionality of a 

yawed inclined cable can be represented in two dimensions. The presence of the upper 

rivulet and its periodic formation were only present at angles of attach in plane of lower 

than 30°, which is in good agreement with previous experimental observations.  In 

addition, at these angles, the Karman vortex shedding is significantly reduced, a 

consequence of which is that the cylinder is more susceptible to another aeroelastic 

instability. As these angles of attack in plane are in excellent agreement with those 

previously identified as causing the largest RWIV response (Gu and Du, 2005;  Zhan et 

al. 2008) it can be concluded that rivulet formation and oscillation does indeed play a 

major role in the governing mechanism which underlies the RWIV phenomenon.  

The successful prediction of characteristic features of RWIV, consistent with 

previous studies, provides excellent evidence of the capabilities of the present solver in 

tracking rivulet formation and evolution. It also highlights that this coupled solver has 

successfully taken the first steps towards numerically modelling RWIV and offers the 

opportunity to investigate detailed aspects of the aeroelastic phenomenon.   
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APPENDIX A : DERIVATION OF MODIFIED ANGLES 

Two additional angles can be defined to help simplify the geometry of the three-

dimensional yawed and inclined cable.  Firstly the relative yaw angle, *, which defines 

the angle between the direction normal to wind and the cable axis. Secondly, the angle 

of attack in the plane normal to the cable axis, , which is a variable constructed such 

that the three-dimensionality of a yawed inclined cable can be represented in two 

dimensions.  This appendix provides derivations of analytical expressions for these two 

modified angles, illustrations of which can be seen in Figure A.1. 

 

Figure A.1 : Definitions of angles , , *, Ueff and , along with the numbering 

convention for vertices. 
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