Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Lower arm electromyography (EMG) activity detection using local binary patterns

McCool, Paul and Chatlani, Navin and Petropoulakis, Lykourgos and Soraghan, John and Menon, Radhika and Lakany, Heba (2014) Lower arm electromyography (EMG) activity detection using local binary patterns. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22 (5). pp. 1003-1012. ISSN 1534-4320

Text (McCool-etal-IEEE-TNSRE-2014-activity-detection-using-local-binary-patterns)
McCool_etal_IEEE_TNSRE_2014_activity_detection_using_local_binary_patterns.pdf - Accepted Author Manuscript

Download (1MB) | Preview


This paper presents a new electromyography activity detection technique in which 1-D local binary pattern histograms are used to distinguish between periods of activity and inactivity in myoelectric signals. The algorithm is tested on forearm surface myoelectric signals occurring due to hand gestures. The novel features of the presented method are that: 1) activity detection is performed across multiple channels using few parameters and without the need for majority vote mechanisms, 2) there are no per-channel thresholds to be tuned, which makes the process of activity detection easier and simpler to implement and less prone to errors, 3) it is not necessary to measure the properties of the signal during a quiescent period before using the algorithm. The algorithm is compared to other offline single- and double-threshold activity detection methods and, for the data sets tested, it is shown to have a better overall performance with greater tolerance to the noise in the real data set used.