Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.


Analysing the economic benefit of electricity price forecast in industrial load scheduling

Mathaba, T and Xia, Xiaohua and Zhang, Jiangfeng (2014) Analysing the economic benefit of electricity price forecast in industrial load scheduling. Electric Power Systems Research, 116. pp. 158-165. ISSN 0378-7796

Full text not available in this repository. Request a copy from the Strathclyde author


The current trend of electricity market deregulation ushers in increasingly dynamic electricity pricing schemes. The cost-optimal scheduling of industrial loads with accurate price forecasts is therefore important. However, results in the current literature suggest that mean absolute percentage error (MAPE) is poor at indicating the economic benefit of a forecast. This paper presents the economic benefit analysis of electricity price forecast on the day-ahead scheduling of load-shifting industrial plants. A coal-conveying system with storage is used as a case study. The research uses three price forecasting methods on the PJM's market prices over a period of two years. Rank correlation (RC) between the predicted price and the actual price is proposed as an indicator of economic benefit. The results show that RC is a better indicator of economic benefit than root mean square error (RMSE) and MAPE. They also show that potential economic benefit obtainable from forecasts depends on price volatility and not mean price. An artificial forecast is used to validate the superiority of RC over MAPE and RMSE. It is observed that the predictability of a forecast's economic benefit is largely dependent on how responsive the load is to electricity price changes.