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Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence
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The pseudospectral method, in conjunction with a technique for obtaining scaling exponents ζn from the
structure functions Sn(r), is presented as an alternative to the extended self-similarity (ESS) method and the
use of generalized structure functions. We propose plotting the ratio |Sn(r)/S3(r)| against the separation r

in accordance with a standard technique for analyzing experimental data. This method differs from the ESS
technique, which plots Sn(r) against S3(r), with the assumption S3(r) ∼ r . Using our method for the particular
case of S2(r) we obtain the result that the exponent ζ2 decreases as the Taylor-Reynolds number increases, with
ζ2 → 0.679 ± 0.013 as Rλ → ∞. This supports the idea of finite-viscosity corrections to the K41 prediction for
S2, and is the opposite of the result obtained by ESS. The pseudospectral method also permits the forcing to be
taken into account exactly through the calculation of the energy input in real space from the work spectrum of
the stirring forces.
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I. INTRODUCTION

In this paper we revisit an old, but unresolved, issue in
turbulence: the controversy that continues to surround the
Kolmogorov theory (or K41) [1,2]. This controversy began
with the publication in 1962 of Kolmogorov’s “refinement
of previous hypotheses” (K62), which gave a role to the
intermittency of the dissipation rate [3]. From this beginning,
the search for “intermittency corrections” has grown into a
veritable industry over the years: for a general discussion, see
the book by Frisch [4] and the review by Boffetta, Mazzino,
and Vulpiani [5]. The term intermittency corrections is rather
tendentious, as no relationship has ever been demonstrated
between intermittency, which is a property of a single realiza-
tion, and the ensemble-averaged energy fluxes which underlie
K41, and it is now increasingly replaced by “anomalous
exponents.” It has also been observed by Kraichnan [6],
Saffman [7], Sreenivasan [8], and Qian [9] that the title of
K62 is misleading. It in fact represents a profoundly different
view of the underlying physics of turbulence, as compared
to K41. For this reason alone it is important to resolve this
controversy.

While this search has been a dominant theme in turbulence
for many decades, at the same time there has been a small but
significant number of theoretical papers exploring the effect of
finite Reynolds numbers on the Kolmogorov exponents, such
as the work by Effinger and Grossmann [10], Barenblatt and
Chorin [11], Qian [9], Gamard and George [12], and Lundgren
[13]. All of these papers have something to say; but the last one
is perhaps the most compelling, as it appears to offer a rigorous
proof of the validity of K41 in the limit of infinite Reynolds
number. This is reinforced by the author’s comparison with
the experimental results of Mydlarski and Warhaft [14].

The controversy surrounding K41 basically amounts to the
following: intermittency corrections versus “finite Reynolds
number effects.” The former are expected to increase with
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increasing Reynolds number and the latter to decrease. In time,
direct numerical simulation (DNS) should establish the nature
of high-Reynolds-number asymptotics, and so decide between
the two. In the meantime, one would like to find some way
of extracting the “signature” of this information from current
simulations.

As is well known, one way of doing this is by extended self-
similarity (ESS). The study of turbulence structure functions
(e.g., see van Atta and Chen [15] and Anselmet, Gagne,
Hopfinger, and Antonia [16]) was transformed in the mid
1990s by the introduction of ESS by Benzi and co-workers
[17,18]. Their method of plotting results for Sn(r) against
S3(r), rather than against the separation r , showed extended
regions of apparent scaling behavior even at low-to-moderate
values of the Reynolds number, and was widely taken up
by others, e.g., Fukayama, Oyamada, Nakano, Gotoh, and
Yamamoto [19], Stolovitzky, Sreenivasan, and Juneja [20],
Meneveau [21], Grossmann, Lohse, and Rech [22], and Sain,
Manu, and Pandit [23]. A key feature of this work was the
implication that corrections to the exponents of structure
functions increase with increasing Reynolds number, which
suggests that intermittency is the dominant effect. In the next
section, we will explain ESS in more detail, in terms of how it
relates to other ways of obtaining exponents.

II. STRUCTURE FUNCTIONS, EXPONENTS, AND ESS

In this section we discuss the various ways in which ex-
ponents are defined and measured. The longitudinal structure
functions are defined as

Sn(r) = 〈
δun

L(r)
〉
, (1)

where the (longitudinal) velocity increment is given by

δuL(r) = [u(x + r,t) − u(x,] · r̂. (2)

Integration of the Kármán-Howarth equation (KHE) leads,
in the limit of infinite Reynolds number, to the Kolmogorov
“4/5” law, S3(r) = −(4/5)εr . If the Sn, for n � 4, exhibit a
range of power-law behavior, then, in general, and solely on
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FIG. 1. Comparison of our values of local-slope exponents ζn(r)
(symbols) given in (5) with our values of the ESS exponents �n(r)
(lines) as calculated from Eq. (8), divided by n/3 to show their
relationship to K41 exponents. Results are given for n = 2,4,6. Both
sets of exponents were calculated from the real-space velocity field
and are presented here for Rλ = 177. The separation, r , has been
scaled on the dissipation scale, η = (ν3

0/ε)1/4.

dimensional grounds, the structure functions of order n are
expected to take the form

Sn(r) = Cn(εr)n/3. (3)

Measurement of the structure functions has repeatedly
found a deviation from the above dimensional prediction for
the exponents. If the structure functions are taken to scale with
exponents ζn, thus

Sn(r) ∼ rζn , (4)

then it has been found [16,18] that the difference 	n = |n/3 −
ζn| is nonzero and increases with order n. Exponents ζn which
differ from n/3 are often referred to as anomalous exponents
[18].

In order to study the behavior of the exponents ζn, it is usual
to make a log-log plot of Sn against r , and measure the local
slope:

ζn(r) = d log Sn(r)

d log r
. (5)

Following Fukayama et al. [19], the presence of a plateau when
any ζn(r) is plotted against r indicates a constant exponent, and
hence a scaling region. Yet, it is not until comparatively high
Reynolds numbers are attained that such a plateau is found.
Instead, as seen in Fig. 1 (symbols), even for the relatively large
value of Reynolds number, Rλ = 177, a scaling region cannot
be identified. (We note that Grossmann et al. [22] have argued
that a minimum value of Rλ ∼ 500 is needed for satisfactory
direct measurement of local scaling exponents.)

The introduction of ESS relied on the fact that S3 scales
with ζ3 = 1 in the inertial range. Benzi et al. [17] argued that
if

Sn(r) ∼ [S3(r)]ζ
∗
n , with ζ ∗

n = ζn/ζ3. (6)

ζ ∗
n should then be equivalent to ζn in the scaling region.

A practical difficulty led to a further step. The statistical
convergence of odd-order structure functions is significantly
slower than that for even orders, due to the delicate balance
of positive and negative values involved in the former [19].
To overcome this, generalized structure functions, where the
velocity difference is replaced by its modulus, have been
introduced [17] (see also [19,20]),

Gn(r) = 〈|δuL(r)|n〉 ∼ rζ ′
n , (7)

with scaling exponents ζ ′
n. The fact that S3 ∼ r in the inertial

range does not rigorously imply that G3 ∼ r in the same range.
But, by plotting G3(r) against |S3(r)|, Benzi et al. [18] showed
that, for Rλ = 225–800, the third-order exponents satisfied
ζ ′

3 	 1.006ζ3. Hence it is now generally assumed that ζ ′
n and

ζn are equal (although Fig. 2 in Belin, Tabeling, and Willaime
[24] implies some discrepancy at the largest length scales, and
the authors note that the exponents ζ ′

n and ζn need not be the
same). Thus, by extension, G3 with ζ ′

3 = 1, leads to

Gn(r) ∼ [G3(r)]�n, with �n = ζ ′
n/ζ

′
3. (8)

Benzi et al. [17] found that plotting their results on this basis
gave a larger scaling region. This extended well into the
dissipative length scales and allowed exponents to be more
easily extracted from the data. Also, Grossmann et al. [22]
state that the use of generalized structure functions is essential
to take full advantage of ESS.

There is, however, an alternative to the use of generalized
structure functions. This is the pseudospectral method. In using
this for some of the present work, we followed the example of
Qian [25,26], Tchoufag, Sagaut, and Cambon [27], and Bos,
Chevillard, Scott, and Rubinstein [28], who obtained S2 and
S3 from the energy and energy transfer spectra, respectively,
by means of exact quadratures.

The organization of our own work in this paper is now
as follows. We begin with a description of our DNS before
illustrating ESS, using results from our own simulations, in
Sec. IV, where we show that our results for ESS agree closely
with those of other investigations [18,19]. These particular
results were obtained in the usual way by direct convolution
sums, using a statistical ensemble, and the generalized struc-
ture functions. In Sec. V we describe the theoretical basis
for using the pseudospectral method [25–28], which includes
a rigorous derivation of the forcing in the real-space energy
balance equation. This is followed by the introduction of a
scaling exponent in Sec. VI and a presentation of our numerical
results for seven Taylor-scale Reynolds numbers spanning the
range 101.3 � Rλ � 435.2.

III. NUMERICAL METHOD

We used a pseudospectral DNS, with full dealiasing
implemented by truncation of the velocity field according to
the two-thirds rule [29]. Time advancement for the viscous
term was performed exactly using an integrating factor, while
the nonlinear term was stepped forward in time using Heun’s
method [30], which is a second-order predictor-corrector rou-
tine. Each simulation was started from a Gaussian-distributed
random field with a specified energy spectrum, which followed
k4 for the low-k modes. Measurements were taken after the
simulations had reached a stationary state. The system was
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FIG. 2. (Color online) Local slopes ζn(r) of the structure functions Sn(r) for n = 2, . . . ,8 from our DNS. The slopes are calculated using
the structure functions evaluated in real space for Reynolds numbers Rλ = 42, 64, 101, and 177. Note the absence of a scaling region in all
cases.

forced by negative damping, with the Fourier transform of the
force f given by

f (k,t) = (εW/2Ef )u(k,t) for 0 < |k| < kf

= 0 otherwise, (9)

where u(k,t) is the instantaneous velocity field (in wave-
number space). The highest forced wave number, kf , was
chosen to be kf = 2.5kmin, where kmin = 2π/Lbox = 1 is the
lowest resolved wave number. As Ef was the total energy
contained in the forcing band, this ensured that the energy in-
jection rate was εW = const. It is worth noting that any method
of energy injection employed in the numerical simulation
of isotropic turbulence is not experimentally realizable. The
present method of negative damping has also been used in other
investigations [31–34], albeit not necessarily such that εW is
maintained constant (although note the theoretical analysis of
this type of forcing by Doering and Petrov [35]). Also, note that
the correlation between the force and the velocity is restricted
to the very lowest wave numbers.

For each Reynolds number studied, we used the same initial
spectrum and input rate εW . The only initial condition changed
was the value assigned to the (kinematic) viscosity. Once the
initial transient had passed, the velocity field was sampled
every half a large-eddy turnover time, τ = L/U , where L

denotes the average integral scale and U the rms velocity.
The ensemble populated with these sampled realizations

was used, in conjunction with the usual shell averaging, to
calculate statistics. Simulations were run using lattices of
size 1283, 2563, 5123, 10243, and 20483, with corresponding
Reynolds numbers ranging from Rλ = 41.8 up to 435.2. The
smallest wave number was kmin = 2π/Lbox = 1 in all simula-
tions, while the maximum wave number satisfied kmaxη � 1.30
for all runs except one which satisfied kmaxη � 1.01, where η

is the Kolmogorov dissipation length scale. The integral scale,
L, was found to lie between 0.23Lbox and 0.17Lbox. It can be
seen in Fig. 2 of McComb, Hunter, and Johnston [36] that a
small-scale resolution of kmaxη > 1.6 is desirable in order to
capture the relevant dissipative physics. Evidently, this would
restrict the attainable Reynolds number of the simulated flow,
and the reference suggests that kmaxη � 1.3 would still be
acceptable (containing ∼ 99.5% of dissipative dynamics [37]).
In contrast, at kmaxη 	 1 a non-negligible part of dissipation
is not taken into account. Most high-resolution DNSs of
isotropic turbulence try to attain Reynolds numbers as high
as possible and thus opt for minimal resolution requirements.
In this paper the simulations have been conducted following
a more conservative approach, where the emphasis has been
put on higher resolution, thus necessarily compromising to
some extent on Reynolds number. Large-scale resolution has
only relatively recently received attention in the literature. As
mentioned above, the largest scales of the flow are smaller than
a quarter of the simulation box size. Details of the individual
runs are summarized in Table I.
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TABLE I. Summary of the main parameters of our numerical
simulations. The values quoted for the dissipation rate ε, the rms
velocity U , and the integral scale L are ensemble- and shell-
averaged mean values, where the ensembles have been populated
with snapshots of the steady-state velocity field taken every half large
eddy turnover time. M counts individual realizations used to calculate
ESS exponents for those runs for which the ESS method has been
performed, not the size of the ensemble used for calculating statistics.

Rλ ν0 N ε U L/Lbox kmaxη M

42.5 0.01 128 0.094 0.581 0.23 2.34 101
64.2 0.005 128 0.099 0.607 0.21 1.37 101
101.3 0.002 256 0.099 0.607 0.19 1.41 101
113.3 0.0018 256 0.100 0.626 0.20 1.31
176.9 0.00072 512 0.102 0.626 0.19 1.31 15
203.7 0.0005 512 0.099 0.608 0.18 1.01
217.0 0.0005 1024 0.100 0.630 0.19 2.02
276.2 0.0003 1024 0.100 0.626 0.18 1.38
335.2 0.0002 1024 0.102 0.626 0.18 1.01
435.2 0.00011 2048 0.102 0.614 0.17 1.30

Our simulations have been well validated by means of
extensive and detailed comparison with the results of other
investigations. Further details of the performance of our code
including verification of isotropy may be found in the thesis
by Yoffe [37], along with values for the Kolmogorov constant
and velocity-derivative skewness; and a direct comparison
with the freely available pseudospectral code hit3d [38,39].
Furthermore, our data reproduce the characteristic behavior
for the plot of the dimensionless dissipation rate Cε against
Rλ [40], and agree closely with other representative results in
the literature, such as the work by Wang, Chen, Brasseur,
and Wyngaard [41], Cao, Chen, and Doolen [42], Gotoh,
Fukayama, and Nakano [43], Kaneda, Ishihara, Yokokawa,
Itakura, and Uno [33], Donzis, Sreenivasan, and Yeung [44],
and Yeung, Donzis, and Sreenivasan [45], although there are
some differences in forcing methods.

IV. REAL-SPACE CALCULATION OF THE STRUCTURE
FUNCTIONS AND ESS

In order to calculate the structure functions in real space,
we calculate the longitudinal correlation of one lattice site with
all other sites,

Sn(r) = 1

3N3

∑
x

[(ux(x + rex) − ux(x))n + (uy(x + rey)

−uy(x))n + (uz(x + rez) − uz(x))n], (10)

for each realization. The results are subsequently ensemble-
averaged over many realizations.

Figure 2 shows the calculated standard local slopes for four
different Reynolds numbers Rλ = 42, 64, 101, and 177. A
plateau would indicate a constant exponent, that is a scaling
region, but the figure does not show the formation of plateaus
for these Reynolds numbers, implying that there is no scaling
region.

If, in contrast the generalized structure functions are used
to evaluate the local slopes �n as defined in (8), scaling

TABLE II. Measurement of the scaling exponents from our DNS
data using ESS. For purposes of comparison, we also show the values
predicted from dimensional analysis (referred to as “K41 theory”),
along with results from Fukayama et al. [19], Gotoh et al. [43], and
Benzi et al. [18].

Rλ �2 �4 �5 �6 �7 �8 Source

0.667 1.333 1.667 2.000 2.333 2.667 K41 theory
42.5 0.690 1.287 1.551 1.796 2.023 2.234 Our DNS, �n

64.2 0.692 1.284 1.544 1.783 2.002 2.201
101.3 0.692 1.283 1.544 1.785 2.008 2.215
176.9 0.694 1.279 1.533 1.762 1.967 2.151
70 0.690 1.288 1.555 1.804 2.037 2.254 DNS [19], �n

125 0.692 1.284 1.546 1.788 2.011 2.217
381 0.709 1.30 1.56 1.79 1.99 2.18 DNS [43], ζn

460 0.701 1.29 1.54 1.77 1.98 2.17
800 0.70 1.28 1.54 1.78 2.00 2.23 Expt. [18], �n

regions are obtained and thus the ESS scaling exponents can
be measured. As shown in Fig. 3, extended plateaus for each
order of generalized structure function are observed, which
reach well into the dissipation scales where we do not expect
power-law behavior. Since Sn ∼ rn as r → 0, we note that
�n(r) → n/3 as r → 0. It should be borne in mind that
this K41-type behavior is an artifact of ESS, as has been
pointed out before [18,46,47]. ESS exponents obtained from
our calculations are shown to be consistent with relevant results
from the literature in Table II.

V. SPECTRAL METHODS

The use of spectral methods to calculate the structure
functions is known in the literature through the work by Bos
et al. [28], Tchoufag et al. [27], and Qian [25,26]. We will now
briefly explain the reason for doing it this way.

Since the calculation of correlation and structure functions
in real space requires a convolution in which the correlation
of each site with every other (longitudinal) site needs to be
measured, moving to large lattice sizes in order to reach
larger Reynolds numbers results in a significant increase in
computational workload. In addition, the number of realiza-
tions required to generate the ensemble takes both longer to
produce and occupies substantially more storage space. In
order to reach higher Reynolds numbers we have therefore
used spectral expressions for the correlation and structure
functions. Real-space quantities are then calculated by Fourier
transforming the appropriate spectral density. For example, the
two-point correlation tensor may be found using

Cαβ(r) =
∫

d3k
〈
uα(k)u∗

β(k)
〉
eik·x . (11)

The assumption of isotropy then allows the transformation
for the calculation of the isotropic correlation function to be
reduced to

C(r) = 1

2
Cαα(r) =

∫
dk E(k)

sin kr

kr
. (12)

The real-space correlation tensor Cαβ(r), when written as a
spatial average instead of an ensemble average (assuming
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FIG. 3. (Color online) Same results as in Fig. 2 evaluated using the ESS method for structure functions calculated in real space. The vertical
lines indicate the scaling region used to evaluate the scaling exponent, �n.

ergodicity, as is the usual practice), is a convolution

Cαβ(r) = lim
V →∞

1

V

∫
V

dx uα(x)uβ(x + r), (13)

of the velocity components uα and uβ . In a similar manner to
the standard pseudospectral DNS technique, that is switching
to real space in order to calculate the nonlinear term and to
avoid the convolution in Fourier space [37], this approach
replaces the convolution in real space with a Fourier transform
of local Fourier-space spectra. Furthermore, the shell-averaged
spectra require substantially less in the way of storage and
processing capabilities than real-space ensembles.

The derivations of the spectral representation of the second-
and third-order structure functions are given in Appendix A,
leading to

S2(r) = 4
∫ ∞

0
dk E(k)a(kr) (14)

and

S3(r) = 6CLL,L(r) = 12
∫ ∞

0
dk

T (k)

k2

∂a(kr)

∂r
, (15)

where

a(x) = 1

3
− sin x − x cos x

x3
, (16)

in agreement with Bos et al. [28]. The local slopes ζn can now
be found by taking derivatives of the spectral forms for the
structure functions,1 as shown in further detail in Appendix A.

The spectral approach has the consequence that we are now
evaluating the conventional structure functions Sn(r), rather
than the generalized structure functions, Gn(r), as commonly
used (including by us) for ESS. Before proceeding to the
calculation of the scaling exponents, we will now discuss
the effects of finite forcing and the calculation of viscous
corrections to the second- and third-order structure functions,
and subsequently validate the pseudospectral approach by
comparing results for the spectrally obtained second- and
third-order structure functions to corresponding real-space
results.

A. Effects of finite forcing on the structure functions

The pseudospectral method can also be used to calculate
the corrections due to finite forcing on the structure func-
tions. The second- and third-order structure functions are
related by energy conservation, that is in real space by the

1Currently this is only possible for S2(r) and S3(r), as the spectral
expressions for the higher-order structure functions have not been
derived yet.
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Kármán-Howarth equation

−3

2

∂U 2

∂t
=−3

4

∂S2

∂t
− 1

4r4

∂

∂r
(r4S3) + 3ν0

2r4

∂

∂r

(
r4 ∂S2

∂r

)
,

(17)

where (3/2)∂U 2/∂t = ∂E/∂t = −εD , with εD denoting
the decay rate. For decaying turbulence the decay rate
equals the dissipation rate ε, that is εD = ε. For stationary
turbulence εD = 0, and the dissipation rate then has to be
equal to the energy input rate, that is ε = εW , where εW

denotes the energy input rate, and the time-dependent S2 term
vanishes. There is, however, a further complication. Replacing
the dissipation rate ε with the energy input rate εW , we see
that the dissipation rate is acting as an input. In the K41
theory, we have an equivalence between the inertial transfer,
dissipation, and input rates, in the infinite Reynolds number
limit. However, in using ε (= εW ) as the input, it has been
implicitly assumed that the forcing does not depend on the
scale r . This is in general not the case, and as such some
method for accounting for the effects of (finite) forcing (i.e.,
Re < ∞) must be introduced. Various proposals have been
put forward, mainly through the inclusion of corrections to
the KHE. These are discussed in Appendix B. An alternative
treatment containing the exact energy input is given in the
following section.

1. KHE derived from the Fourier space energy balance

Instead of including a correction term in the KHE for forced
turbulence, the effect of finite forcing can be calculated exactly
using the spectral approach. We begin with the energy balance
equation in spectral space (nowadays referred to as the Lin
equation [40,48])

∂E(k,t)

∂t
= T (k,t) − 2ν0k

2E(k,t) + W (k,t), (18)

where W (k,t) is the work spectrum of the stirring forces and
thus contains the relevant information about the forcing. In
order to obtain the energy balance equation in real space
including the effects of (finite) forcing, we assume isotropy,
take the Fourier transform of the Lin equation, and use the
definitions of the structure functions S2 and S3 in order to
obtain the energy balance equation in real space (the KHE)
relating S2 and S3

∂U 2

∂t
− 1

2

∂S2(r)

∂t
= 1

6r4

∂

∂r
(r4S3(r))

−ν0

r4

∂

∂r

(
r4 ∂S2(r)

∂r

)
+ 2

3
I (r,t), (19)

where the input term I (r,t) is defined as

I (r,t) = 3

r3

∫ r

0
dy y2W (y,t), (20)

and W (y,t) is the (three-dimensional) Fourier transform of the
work spectrum W (k,t). A detailed derivation of this equation
from the Lin equation (18) can be found in Appendix C.

In order to write (19) in terms of energy loss, we multiply
by −3/2 on both sides and obtain

εD = −3

4

∂S2(r)

∂t
− 1

4r4

∂

∂r
(r4S3(r))

+3ν0

2r4

∂

∂r

(
r4 ∂S2(r)

∂r

)
− I (r,t). (21)

This is now the general form of the KHE including the effects
of general, unspecified forcing. For the case of free decay, εD =
ε and the input term I (r,t) = 0, which leads to the well-known
KHE for free decay. On the other hand, for the stationary case
εD = 0, ∂S2/∂t = 0 and the input term is independent of time
I (r,t) = I (r); thus

I (r) = − 1

4r4

∂

∂r
(r4S3(r)) + 3ν0

2r4

∂

∂r

(
r4 ∂S2(r)

∂r

)
. (22)

This derivation shows that the dissipation rate should not be
present in the KHE for stationary turbulence with finite forcing.
Only for the limit of δ(k) forcing do we obtain I (r) = εW = ε

and hence recover the dissipation rate as an input term.
In contrast to previous attempts to include the effects of

forcing into the KHE, we do not approximate the work term.
Instead, we use full information of this term as supplied by
the work spectrum. In this way an explicit form for the actual
energy input by the stirring forces can be calculated, as we shall
now show. By integrating (22) with respect to r one obtains

S3(r) = X(r) + 6ν0
∂S2

∂r
, (23)

with the input due to finite forcing

X(r) = − 4

r4

∫ r

0
dy y4I (y) (24)

evaluated using the spectral method

X(r) = −12r

∫ ∞

0
dk W (k)

×
[

3 sin kr − 3kr cos kr − (kr)2 sin kr

(kr)5

]
. (25)

Note that X(r) is not a correction to K41, as used in previous
studies. Instead, it replaces the erroneous use of the dissipation
rate and contains all the information of the energy input at all
scales. In the limit of δ(k) forcing, I (y) = εW = ε, such that
X(r) = −4εr/5, giving K41 in the infinite Reynolds number
limit.

B. Real-space versus spectral structure functions

Results from pseudospectral calculations of the structure
functions were compared to real-space ensemble averaged
results for Rλ = 101 and Rλ = 177. As can be seen in Fig. 4,
agreement for S2(r) is very good for all r . For S3(r) we observe
good agreement for small r , but the curves diverge at large r .
This could be due to DNS data being periodic in Lbox = 2π .
Since S3(r) is an odd function of r , it must go to zero in the
center of the domain. The pseudospectral method, however,
involves a (weighted) superposition of damped oscillating
functions which does not necessarily require that S3(Lbox/2) =
0. Figure 5 shows the compensated second- and third-order
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FIG. 4. (Color online) Comparison of second- and third-order
(scaled) structure functions calculated from the real-space ensembles
and from energy and transfer spectra for two different Reynolds
numbers. The agreement for S2 is good at all scales, while for S3

the results from real-space and spectral space calculations diverge at
the large scales.

structure function calculated from real-space ensembles for
the Taylor-scale Reynolds number range 43 � Rλ � 177. This
may be compared to Fig. 3(b) in the paper by Ishihara, Gotoh,
and Kaneda [49].

C. Spectral calculation from DNS

The pseudospectral method was used to calculate structure
functions for Rλ = 101, 113, and also for the higher Reynolds
number range 177 � Rλ � 435, which can be seen in Fig. 6,
where the arrows indicate the direction of increasing Reynolds
number. The lower horizontal dotted line in the picture
indicates K41 scaling for the third-order structure function,
while the upper horizontal line indicates our measured value
CK,S2 = 2.07 for the prefactor CK,S2 of the second-order
structure function. The prefactor CK,S2 is related to the
prefactor CK,ELL

of the longitudinal energy spectrum ELL(k)
by CK,S2 = 4.02CK,ELL

[50], which has been measured by
Sreenivasan [51] to be CK,ELL

= 0.53 ± 0.055. This results

 0.1

 1

 10

 10  100  1000
r/η

4/5

S2(r)/(εr)
2/3

Rλ = 43
Rλ = 64
Rλ = 101
Rλ = 177

S3(r)/εr
Rλ = 43
Rλ = 64
Rλ = 101
Rλ = 177

FIG. 5. Second- and third-order (scaled) structure functions,
calculated from the real-space ensembles. This figure should be
compared to Fig. 6. The comparison shows how the real-space results
can be extended to higher Reynolds numbers using the spectral
method.

in CK,S2 = 2.13 ± 0.22, compared to our measured value of
CK,S2 = 2.07. Comparison of Figs. 5 and 6 shows how the
spectrally calculated results for the second- and third-order
structure functions extend the real-space results to higher
Reynolds numbers.

The viscous correction to the “four-fifths” law and to the
exact input contribution X(r) calculated by the spectral method
are shown in Fig. 7 and Fig. 8, respectively, with the third-order
structure function plotted for comparison. This is presented for
our highest resolved simulation at Rλ = 435.2. Together with
the viscous correction, the input X(r) given in (25) can be seen
to account for differences between the third-order structure

 1

 10

 10  100  1000
r/η

4/5

2.07

S2(r)/(εr)
2/3

Rλ = 177
Rλ = 204
Rλ = 276
Rλ = 335
Rλ = 435

S3(r)/εr
Rλ = 177
Rλ = 204
Rλ = 276
Rλ = 335
Rλ = 435

FIG. 6. Compensated second- and third-order (scaled) structure
functions, calculated from energy and transfer spectra. The horizontal
lines indicate K41 scaling, where the upper horizontal line indicates
our measured value CK,S2 = 2.07 for the prefactor CK,S2 of the
second-order structure function. The arrows indicate the direction
of increasing Reynolds number, and one observes the formation of
longer plateaus for both S2 and S3 with increasing Reynolds number
indicating an approach to K41 scaling.
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FIG. 7. Evaluation of the viscous correction to the “four-fifths”
law for the third-order structure function using the spectral method,
with Rλ = 435.2. The correction can be seen to account for the
difference between the four-fifths law and DNS data at small scales.

function and the four-fifths law at all scales, as can be seen
in Fig. 8. In contrast, Fig. 7 shows that the viscous correction
alone only accounts for the difference between DNS data for
the third-order structure function and K41 at the small scales,
as expected, since at scales much smaller than the forcing scale
the system becomes insensitive to the details of the (large-
scale) forcing.

VI. LOCAL SCALING EXPONENT �n

We now arrive at our proposal to introduce a local-scaling
exponent �n, which can be used to determine the ζn. We
work with Sn(r) and consider the quantity |Sn(r)/S3(r)|. In

10-5

10-4

10-3

10-2

10-1

100

100 101 102 103

r/η

-S3(r)/u3

-[X(r) + 6ν0∂S2/∂r]/u3

0.8εr/u3

FIG. 8. Evaluation of the viscous correction to the input X(r) (in
place of the four-fifths law) for the third-order structure function.
Calculations were performed using the spectral method, with Rλ =
435.2. The contributions can be seen to account for the differences
between the four-fifths law and DNS data at all scales.

this procedure, the exponent �n is defined by∣∣∣∣Sn(r)

S3(r)

∣∣∣∣ ∼ r�n, where �n = ζn − ζ3. (26)

The definition of �n is motivated by a long-established
technique in experimental physics, where the effective ex-
perimental error can be reduced by plotting the ratio of two
dependent variables: see, e.g., Chap. 3 in the well-known book
by Bevington and Robinson on data analysis [52]. Of course
this does not work in all cases, but only where the quantities
are positively correlated, and we have verified that this is the
case for S2 and |S3|.

The error in the measurement of the nth-order structure
function can be expressed as

Sn(r) = [
1 + εn(r) + O

(
ε2
n

)]
Sn(r), (27)

where Sn(r) is the “true” value and εn(r) a measurement of the
systematic error and considered small. Hence if εn(r) ∼ ε(r),
then the ratio | Sn(r)

S3(r) | has an error proportional to the second
order of a small quantity,

Sn(r)

S3(r)
= Sn(r)

S3(r)
[1 − ε2(r) + O(ε3)]. (28)

For illustration purposes we assumed here that Sn and S3 were
perfectly correlated; note that for imperfect correlation there
is still a reduction in error. The local slope now is found by
considering �2(r) = ζ2(r) − ζ3(r). By once again assuming
that ζ3(r) = 1, the local slope for the second-order structure
function is found as �2(r) + 1 = ζ2(r).

A. Scaling exponents from spectra

The scaling exponent �n, based on the conventional (as
opposed to the generalized) structure functions Sn(r), is com-
patible with spectral methods and has been tested for the case
n = 2 in Fig. 9. The dimensionless quantity U |S2(r)/S3(r)|,
where U is the rms velocity, is plotted against r/η, for three
values of Rλ. Note that, since K41 predicts �2 = −1/3, we
have plotted a compensated form, in which we multiply the
ratio by (r/η)1/3, such that K41 scaling would correspond
to a plateau. From the figure, we can see a trend towards
K41 scaling as the Reynolds number is increased. Note that
this figure also illustrates the ranges used to find values for
our exponent �2, for the following cases. �2 was fitted to
the ranges λ < r < cλ, with c = 2.0, 2.5, 2.6, and 2.7 for
Rλ = 101, 217, 276, and 435, respectively.

Figure 10 summarizes the comparison between our results
for our method of determining the second-order exponent and
those based on ESS (our own and others [18,19]) or on direct
measurement [43], in terms of their overall dependence on
the Taylor-Reynolds number. In order to establish the form
of the dependence of the exponents on Reynolds number,
we fitted curves to the data points using the nonlinear-least-
squares Marquardt-Levenberg algorithm, with the error quoted
being one standard error. Using the data obtained from our
method, we fitted a curve �2 + 1 = A + BR

p

λ to find the
asymptotic value A = 0.679 ± 0.013, which is consistent with
the deviations from K41 scaling being finite Reynolds number
effects. In order to compare this result with results obtained
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FIG. 9. Compensated ratio (r/η)1/3U |S2(r)/S3(r)| plotted against
r and scaled on the dissipation scale, η. K41 scaling would correspond
to a plateau. Arrows indicate λ/η, while the vertical dotted lines
show the region used to fit each exponent. Note that the measured
compensated slopes become flatter with increasing Reynolds number,
pointing towards the deviation from Kolmogorov scaling being a finite
Reynolds number effect.

by the ESS method, we fitted the curve �2 = C + DR
q

λ to our
own data plus that of Fukayama et al. [19]. Evidently the two
fitted curves show very different trends, with results for �2

increasing with increasing Reynolds number, whereas ζ2 =
�2 + 1 decreases and approaches 2/3 (within one standard
error) as Rλ increases.

It should be emphasized that with both methods, that is
ESS and our method, it is necessary to take ζ3 = 1 in the
inertial range, in order to obtain the inertial-range value of
either �2 = ζ2 (by ESS) or �2 = ζ2 − 1 (our method). For this

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 100  1000

Ex
po

ne
nt

Rλ

Asymptote: 0.679

Present DNS: Γ2+1
Present DNS: Σ2
Gotoh et al.[43]: ζ2
Fukayama et al.[19]: Σ2
Benzi et al.[18]: Σ2

FIG. 10. Dependence of our exponent ζ2 = �2 + 1 on Reynolds
number, compared to measured ESS exponents denoted by �2 from
Fukayama et al. [19], Benzi et al. [18], and our DNS, as well as results
for ζ2 by Gotoh et al. [43]. The horizontal line indicates the K41 value
of 2/3. The dash-dot line indicates the fit to �2 + 1, while the dashed
line shows a fit to �2 using our results and those of Fukayama et al.
[19].

reason, we plot �2 + 1, rather than �2 in Fig. 10. An obvious
difference between our proposed method and ESS is apparent
as r → 0. This is readily understood in terms of the regularity
condition for the velocity field, which leads to Sn(r) ∼ rn as
r → 0 [20,53]. This yields �n(r) + 1 → n − 2, whereas ESS
gives �n(r) → n/3.

In this context it may be of interest to briefly discuss
the experimental results of Mydlarski and Warhaft [14], who
measured the exponent of the longitudinal energy spectrum
for a range of Taylor-Reynolds numbers from Rλ = 50 to
Rλ = 473, which is similar to the range of Taylor-Reynolds
numbers studied in the present paper. The authors found the
inertial-range exponent α of the longitudinal energy spectrum
ELL(k) to depend on Rλ in the following way:

α = − 5
3

(
1 + 3.15R

−2/3
λ

)
. (29)

Hence α → −5/3 in the limit of infinite Reynolds number.
Thus the results of Mydlarski and Warhaft support our result
for the exponent of S2, since α → −5/3 implies ζ2 → 2/3 as
Rλ → ∞.

VII. CONCLUSIONS

As we have said in the Introduction, the point at issue is
essentially “intermittency corrections versus finite Reynolds
number effects.” The former has received much more attention;
but, in recent years, there has been a growing interest in
studying finite Reynolds number effects, experimentally and
by DNS, for the case of S3: see [27,43,54] and references
therein. (Although we note that in this case the emphasis is on
the prefactor rather than the exponent.)

Our result that ζ2 = �2 + 1 → 2/3 is an indication that
anomalous values of ζ2 are due to finite Reynolds number
effects, consistent with the experimental results of Mydlarski
et al. which point in the same direction. Previously it had been
suggested by Barenblatt et al. that ESS could be interpreted in
this way [46], but this was disputed by Benzi et al. [47].

There is much remaining to be understood about these
matters and we suggest that our method of analyzing data
can help. It should, of course, be noted that our use of S3

(as evaluated by pseudospectral methods) rather than G3 (as
used with ESS), may also be a factor in our result. As a
matter of interest, we conclude by noting that our analysis
could provide a stimulus for further study of ESS and may
lead to an understanding of the relationship between the two
methods. It is also the case that the pseudospectral method
could be used for the general study of higher-order structure
functions, but this awaits the derivation of the requisite Fourier
transforms.
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APPENDIX A: DERIVATION OF THE SPECTRAL
REPRESENTATION OF THE STRUCTURE FUNCTIONS

The second-order structure function can be derived from the
relationship between the isotropic correlation function C(r)
and the energy spectrum E(k), where

C(r) =
∫ ∞

0
dk E(k)

sin kr

kr
(A1)

and

E(k) = 2

π

∫ ∞

0
dr C(r)kr sin kr, (A2)

as, e.g., in Batchelor [57], Eq. (3.4.15), p. 49. Equation (A1)
can be used to derive a spectral expression for the longitudinal
correlation function CLL(r), since C(r) and CLL(r) are related
through

C(r) = 1

2r2

∂

∂r
[r3CLL(r)], (A3)

which can be integrated to give

CLL(r) = 2

r3

∫ r

0
dy y2C(y). (A4)

Now the integral over y is done analytically to obtain

CLL(r) = 2
∫ ∞

0
dk E(k)

[
sin kr − kr cos kr

(kr)3

]
, (A5)

as in Monin and Yaglom [50], Vol. 2, Eq. (12.75). The spectral
expression for the second-order structure function is now
readily seen to be

S2(r) = 2U 2 − 2CLL(r)

= 2
2

3

∫ ∞

0
dk E(k)︸ ︷︷ ︸

U 2

−4
∫ ∞

0
dk E(k)

[
sin kr − kr cos kr

(kr)3

]
, (A6)

which can be written in a more concise form

S2(r) = 4
∫ ∞

0
dk E(k)a(kr), (A7)

using

a(x) = 1

3
− sin x − x cos x

x3
. (A8)

Note that a(0) = 0 since

lim
x→0

sin x − x cos x

x3
= 1

3
. (A9)

Similarly, the spectral expression for the third-order struc-
ture function can be derived from the relationship between
the isotropic third-order correlation function and the transfer
spectrum

1

2

(
3 + r

∂

∂r

)(
∂

∂r
+ 4

r

)
CLL,L(r)

= 1

2r2

∂

∂r

[
1

r

∂

∂r
(r4CLL,L(r))

]
=

∫ ∞

0
dk T (k)

sin kr

kr
,

(A10)

as in, e.g., Batchelor [57], Eq. (5.5.14), p. 101, where
Batchelor’s K(r) corresponds to (1/r4)(∂/∂r)r4CLL,L(r) in
our notation. After integrating by parts (with respect to r) one
obtains

CLL,L(r) = 2r

∫ ∞

0
dk T (k)

×
[

3 sin kr − 3kr cos kr − (kr)2 sin kr

(kr)5

]

(A11)

= 2
∫ ∞

0
dk

T (k)

k2

∂a(kr)

∂r
. (A12)

See, e.g., Monin and Yaglom [50], Vol. 2, Eq. (12.141′′′).
The spectral expression for the third-order structure function
follows directly:

S3(r) = 6CLL,L(r) = 12
∫ ∞

0
dk

T (k)

k2

∂a(kr)

∂r
. (A13)

The local slopes ζ2 and ζ3 can now be found by taking
derivatives of the spectral forms for the structure functions

ζ2(r) = r

S2(r)

∂S2(r)

∂r
= 4r

S2(r)

∫ ∞

0
dk E(k)

∂a(kr)

∂r

= 4

S2(r)

∫ ∞

0
dk E(k)

×
[

3 sin kr − 3kr cos kr − (kr)2 sin kr

(kr)3

]
, (A14)

ζ3(r) = r

S3(r)

∂S3(r)

∂r
= 12r

S3(r)

∫ ∞

0
dk

T (k)

k2

∂2a(kr)

∂r2

= 12r

S3(r)

∫ ∞

0
dk T (k)

×
[

(5(kr)2 − 12) sin kr − ((kr)2 − 12)kr cos kr

(kr)5

]
.

(A15)

APPENDIX B: PREVIOUS ATTEMPTS TO INCLUDE
THE EFFECTS OF FORCING IN STUDIES

OF THE STRUCTURE FUNCTIONS

Gotoh et al. [43] studied a “generalized” KHE equation
defined through their equation (27), which is rewritten here as

ε = − 1

4r4

∂

∂r
(r4S3) + 3ν0

2r4

∂

∂r

(
r4 ∂S2

∂r

)
+ 3

4r
IG(r), (B1)

with the input defined from their equation (28) in terms of our
input term, I (r), as

IG(r) = 4r

∫ ∞

0
dk W (k)

[
1

3
− sin kr − kr cos kr

(kr)3

]

= 4r

3
(εW − I (r)). (B2)
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Gotoh et al. retain the dissipation rate in the KHE, despite
its origin as ∂U 2/∂t = 0 for forced turbulence. They then find
a correction in order to compensate for the retained dissipation
rate, which also includes the work done by the stirring forces.
Note that ε = εW cancels on both sides of the equation. The
correction is then approximated, since the forcing is confined
to low wave numbers

IG(r) 	 2
15εWK2r3, (B3)

where

K2 =
∫ ∞

0 dk k2W (k)∫ ∞
0 dk W (k)

= 1

εW

∫ ∞

0
dk k2W (k). (B4)

This approximation is plotted in Fig. 13 of [43], and can be
seen to give good agreement to DNS data for most scales. It is
also used to express S3(r) in terms of S2,

S3(r) = −4εr

5
+ 6ν0

∂S2

∂r
+ 2

35
εWK2r3, (B5)

as shown in (their) Fig. 11. This approach has also been
discussed in Kaneda et al. [58].

Sirovich et al. [53] use

S3(r) = −4εr

5
+ 6ν0

∂S2

∂r
+ 6

r4

∫ r

0
dy y4〈δuL(y)δfL(y)〉,

(B6)

where the longitudinal force increment is defined [in a similar
manner to δuL(r)] as

δfL(r) = [ f (x + r) − f (x)] · r̂. (B7)

This approach also retains the dissipation rate alongside a
correction term. The integral in (B6) is approximated to give

S3(r) 	 −4εr

5
+ 6ν0

∂S2

∂r
+ 2

7
εk2

0r
3, (B8)

with k0 the forcing wave number. This can be compared to
(B5) for the result obtained by Gotoh et al.

APPENDIX C: DERIVATION OF THE KHE FROM THE
FOURIER SPACE ENERGY BALANCE

In order to obtain the energy balance equation in real
space including the effects of (finite) forcing, we as-
sume isotropy and take the Fourier transform of the Lin

equation (18)

∂

∂t

∫ ∞

0
dk E(k,t)

sin kr

kr

=
∫ ∞

0
dk T (k,t)

sin kr

kr
− 2ν0

∫ ∞

0
dk k2E(k,t)

sin kr

kr

+
∫ ∞

0
dk W (k,t)

sin kr

kr
. (C1)

For the work term we obtain

W (r,t) =
∫ ∞

0
dk W (k,t)

sin kr

kr

= 1

2
[〈uα(x)fα(x + r)〉 + 〈fα(x)uα(x + r)〉]. (C2)

For the dissipation term, note that(
2

r
+ ∂

∂r

)
∂

∂r

∫ ∞

0
dk E(k,t)

sin kr

kr

= −
∫ ∞

0
dk k2E(k,t)

sin kr

kr
, (C3)

thus, using (A10) and (A1), we obtain for the energy balance
equation in real space

∂C(r)

∂t
= 1

2r2

∂

∂r

[
1

r

∂

∂r
(r4CLL,L(r))

]

+2ν0

r2

∂

∂r

(
r2 ∂C(r)

∂r

)
+ W (r,t). (C4)

By using the relation (A3) between C(r) and CLL(r), multi-
plying by 2r2 integrating once over r , and finally dividing by
r3, we obtain the KHE in terms of the longitudinal correlation
functions

∂CLL(r)

∂t
= 1

r4

∂

∂r
(r4CLL,L(r)) + 2ν0

r4

∂

∂r

(
r4 ∂CLL(r)

∂r

)

+ 2

r3

∫ r

0
dy y2W (y,t). (C5)

Now we can insert the definitions of the structure functions
and arrive at the KHE relating S2 and S3

∂U 2

∂t
− 1

2

∂S2(r)

∂t
= 1

6r4

∂

∂r
(r4S3(r)) − ν0

r4

∂

∂r

(
r4 ∂S2(r)

∂r

)

+2

3
I (r,t), (C6)

where the input term I (r,t) is defined as

I (r,t) = 3

r3

∫ r

0
dy y2W (y,t). (C7)
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