Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Permutation statistics on involutions

Dukes, W.M.B. (2007) Permutation statistics on involutions. European Journal of Combinatorics, 28 (1). pp. 186-198. ISSN 0195-6698

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper we look at polynomials arising from statistics on the classes of involutions, In, and involutions with no fixed points, Jn, in the symmetric group. Our results are motivated by Brenti's conjecture [F. Brenti, Private communication, 2004] which states that the Eulerian distribution of In is log-concave. Symmetry of the generating functions is shown for the statistics d, maj and the joint distribution (d, maj). We show that exc is log-concave on In, inv is log-concave on Jn and d is partially unimodal on both In and Jn. We also give recurrences and explicit forms for the generating functions of the inversions statistic on involutions in Coxeter groups of types Bn and Dn. Symmetry and unimodality of inv is shown on the subclass of signed permutations in Dn with no fixed points. In the light of these new results, we present further conjectures at the end of the paper.