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1 Continuum Theory for Liquid Crystals

1.1 Introduction

The continuum theories for liquid crystals that are in use today largely stem from the
original work of Oseen [88,89] and Zocher [115,116], and the general classifications of
liquid crystal phases described by Friedel [44], in the 1920s and 1930s. Friedel proposed
a classification scheme for liquid crystals that consists of three broad categories called
nematic, cholesteric and smectic. This classification has been widely adopted and is now
in general usage. In 1958, Frank [41] gave a direct formulation of the energy function
needed for the continuum theory and this rejuvenated interest in the subject in the
1960s when Ericksen [34] developed a static theory for nematic liquid crystals which
consequently led to balance laws for dynamical behaviour [33]. This work encouraged
Leslie [60,61] to formulate constitutive equations for dynamics and thereby complete
what has turned out to be an extremely successful and comprehensive dynamic theory
for nematic liquid crystals. The continuum theory, and crucial continuum descriptions,
will be reviewed below. More recently, there has been a renewal of interest in biaxial
nematics and smectic liquid crystals and continuum theories that extend the notions
developed by Ericksen and Leslie to these phases of liquid crystals will also be mentioned
in this Chapter.

There are various detailed accounts, and examples of applications, of the continuum
theory for liquid crystals that are readily available. These can be found in the books by
Barbero and Evangelista [10], Blinov [15], Chandrasekhar [22], de Gennes and Prost [48],
Pasechnik, Chigrinov and Shmeliova [92], Stewart [104] and Virga [107], and also in the
review articles by Ericksen [36], Jenkins [54], Leslie [62] and Stephen and Straley [103].
A convenient summary of the continuum equations for nematic, biaxial nematic and
smectic C liquid crystals can be found in the article by Atkin, Sluckin and Stewart [5].

1.2 Equilibrium Theory for Nematics
1.2.1 Notation

It will be assumed throughout that the reader has some familiarity with standard vector
notation and index (or suffix) notation for Cartesian tensors; there are many readily
available introductions such as those by, for example, Aris [4], Leigh [59], Goodbody [50]
and Spencer [102]. The liquid crystal literature makes extensive use of both direct vector
notation and index notation.

For example, a vector a can be expressed in terms of its components a; relative to a
set of basis vectors e;, © = 1,2,3. The Einstein summation convention enables a to be
written as

a=ae;, (1)

where it is understood that the repeated index ¢ is summed from, in this example, 1
to 3. The summation convention obeys the following rule: whenever an index appears
twice, and only twice, in the same term, a summation is implied over all the contributions
obtained by letting that particular index assume all its possible values, unless an explicit
statement is made to the contrary. Thus the scalar product of the vectors a and b is



simply
The summation convention can also be applied to matrices. For example, if A = [a;;]
and B = [b;;] are n x n matrices, then their product AB = C' = [¢;;] is the matrix with
components
Cij = Aty (3)

with a summation over the index k from 1 to n being implied. The dyadic product of the
vectors a and b is denoted a® b and it can be considered as a matrix with components
given by [a ® bl;; = a;b;.

Two quantities that are widely used are the Kronecker delta d;; and the alternator
€ijk, defined when 4, j and k can each take any of the values 1, 2 or 3. These are defined

by, respectively,
1 ifi=j,
0ij = L, (4)
0 ifs#j,
and
1 if 4, j and k£ are unequal and in cyclic order,
€k = § —1 if 4, j and k are unequal and in non-cyclic order, (5)

0 if any two of 4, j or k are equal.

The vector product of two vectors a and b is defined by
axb= €; Eijkajblc . (6)

The partial derivative with respect to the i*" variable is denoted by a comma followed
by the variable. For instance, p; represents the partial derivative of the quantity p with
respect to the ¢ variable. Similarly, a; ; is the partial derivative of the i"® component of
the vector a with respect to the ;'™ variable. The gradient of a scalar field p is defined
by

Vp=ep,;, (7)
while the divergence of a vector a is given by
V A = ai,i s (8)
and its curl is defined by
V xa= €; €ijk0k,j - (9)

In this Chapter, the gradient of the vector a will be defined by [59]
Va= Q4 5 €; &® €. (10)

We can consider Va as a matrix with components given by [Va], ; = a;;. The divergence
of a second order tensor with components 7;; will be defined here by

Tijj - (11)

There is also an alternative definition in the literature for the divergence of a second
order tensor which happens to involve the transpose of 7;;; however, the above definition
is in accordance with the convention adopted by Truesdell and Noll [106], Leigh [59] and
Leslie [62].



1.2.2 Nematics

The Austrian botanist Reinitzer is generally acknowledged as the discoverer of liquid
crystals and he reported his findings in 1888 [96] (an English translation of this article
is now available [97]). It transpired that Reinitzer had actually observed ‘two melting
points’” when heating up cholesteryl benzoate, now known to be a cholesteric liquid
crystal, also called a chiral nematic liquid crystal. In 1907, Vorldnder [108] discovered
that an essential prerequisite for the observations of Reinitzer was the presence of rod-like
molecules. Vorlander’s discovery was, and remains, crucial for the theoretical modelling
of liquid crystals because it allows many of the basic molecular structure of liquid crystals
to be described via a rod-like model. It therefore proves convenient to introduce a unit
vector n, called the director, to describe the local direction of the average molecular
alignment, as shown in Fig. 1, where short bold lines show schematically the rod-like
structure of what are called nematic liquid crystals. The absence of polarity in nematics

director nematic liquid crystal

Figure 1: A schematic representation of a nematic liquid crystal phase where the
short bold lines represent the molecules. A unit vector n, called the director, describes

the average direction of the molecular alignment.

means that n and —n are indistinguishable, in the sense that the sign of n has no
physical significance.

The continuum theory of nematic liquid crystals employs the director n to describe
the mean molecular alignment at a point x in a given sample volume V. Hence

n = n(x), n-n-=1. (12)

This alignment exhibits elasticity and it is therefore supposed that there is a free energy
density, also called the free energy integrand, associated with distortions of the director

of the form
w = w(n, Vn), (13)

with the total elastic energy being
W = / w(n,Vn)dV. (14)
v

It will be assumed here that the liquid crystal is incompressible, that is, the mass density
remains constant. A liquid crystal sample exhibiting a completely relaxed configuration
in the absence of forces, fields and boundary conditions, is said to be in a natural
orientation. The free energy is defined to within the addition of an arbitrary constant
and therefore this constant is chosen such that w = 0 for any natural orientation, in
which case we suppose that any other state or configuration induced upon the sample
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produces an energy that is greater than or equal to that for a completely relaxed natural
orientation. It is therefore supposed that

w(n,Vn) > 0. (15)

Nematic liquid crystals generally lack polarity and so the vectors n and —n are
physically indistinguishable. It is then natural to require

w(n,Vn) = w(—n, —Vn). (16)

The free energy must also be the same when described in any two frames of reference,
that is, it must be frame-indifferent. This means that the energy density must be
invariant to arbitrary superposed rigid body rotations and consequently it is required
that

w(n, Vn) = w(Qn, QVnQ"), (17)

where @ is any proper orthogonal matrix (det Q = 1), QT being its transpose. This con-
dition suffices for chiral nematics, but needs to be extended to apply to any orthogonal
matrix @) with det ) = +1 for nematics (see [104] for further details).

Both Oseen [88] and Frank [41] considered an integrand that was quadratic in the
gradients of n. The aforementioned symmetry constraints lead to [41]

w = %Kl(v . lfl)2 + %KQ(H -V X n)Q + %Ki%(n X V X n)2

+ {(Ky+ K)V - [(n-V)n— (V-n)n] (18)

where the constants K; are known as the Frank elastic constants; K, K, and K3 are
often called the splay, twist and bend elastic constants, respectively. The combination
Ky + K, is called the saddle-splay constant and is often omitted in many calculations
because, being a divergence, it may be expressed as a surface energy using the usual
divergence theorem. The energy density in equation (18) is generally known as the
Frank—Oseen energy for nematic liquid crystals. The non-negativity requirement w > 0
arising from equation (15) leads to the inequalities

K, >0, Ky >0, K3 >0,

(19)
Ky > |Kyl, 2Ky > Ky+ K4 >0.

These are often referred to as Ericksen’s inequalities [35]. The elastic constants generally
have a magnitude of around 5x 10712 N [48,103,104]; tabulated data for many nematic
liquid crystals can be found in [31].

There is an important identity due to Ericksen [37] that is used for the simplification
of the continuum equations; we record it here for reference and note that it can be
extended to smectic liquid crystal theory [72,105] (discussed below). It can be written

as
ow ow ow
e 2y, T ) o, 20
€ijk (n] Oy + Njp One, + Np,j (%lp,k) (20)

Sometimes, for example, when the relative values of the elastic constants are un-
known or when the resulting equilibrium equations are complicated, the one-constant
approximation

K=K =Ky,=K;, K;=0, (21)
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is made. (Some authors, in the one-constant approximation, equate the splay, twist
and bend constants and assume that Ky + K4, = 0 rather than K4 = 0. In the case
of strong anchoring this alternative approximation leads to equilibrium equations that
are identical to those obtained using (21); of course, the total energy will be different
because there will be alternative surface contributions to the energy (cf. the example
in [104, p.118].) The energy density w in (18) can then be simplified, via various vector
identities [104], so that it can be written as

Wgp = %KHVH”Q = %Kni,jnm. (22)

This means that, in Cartesian coordinates, the energy density is simply the sum of the
squares of the components of Vn.

1.2.3 Equilibrium equations

Ericksen [34] formulated the equilibrium theory for both nematic and cholesteric liquid
crystals via a principle of virtual work. A detailed summary of this process can be found
in [104]. The variation of the total energy is postulated to satisfy the principle of virtual
work, given by

(5/w(n,Vn) dV:/(F~5X—i—G-An)dV+/(t-5X+S-An)d5’, (23)
v v s

where V' is the volume of the liquid crystal sample, S is its boundary surface, w is the
energy density and the virtual displacements are denoted by éx. The quantity An is
defined by

An = én + (0x-V)n, (24)

which can be interpreted as the variational equivalent of the material derivative of n.
The body force per unit volume is denoted by F', t is the surface force per unit area, and
G and s are generalised body and surface forces, respectively. The virtual displacements
and the variations in the director are not arbitrary, but are subject to the constraints

V-(0x)=0, nén=0, n-An=0. (25)

The first constraint in (25) is due to the assumption of incompressibility when the mass
density p(x) is constant. This follows from the requirement that the variations must
satisfy

op+V-(pox)=0, (26)

reflecting the conservation of mass property due to incompressibility, which clearly re-
duces to the first constraint when p is constant. The latter two constraints in (25)
follow from applying the rules for variations to the original constraint (12) which forces
n;n; ; = 0 and using the definition of An in equation (24).

By the consideration of an arbitrary, infinitesimal, rigid displacement dx = a, with
a a constant vector, and for which An = 0, it can be shown using (23) that

/FdV+/tdS:O, (27)
1% S



which obviously expresses the fact that the resultant force at equilibrium is zero. Simi-
larly, consideration of an arbitrary (constant) infinitesimal, rigid rotation w for which

X =w X X, An=w xn, (28)

leads to, after an application of Ericksen’s identity (20) applied to a calculation that
involves (23), the balance of moments being expressed as

/(xxF+n><G)dV+/(x><t—|—n><s)dS:O. (29)
v S

This is a statement that the balance of moments at equilibrium is zero. From this
relationship it is seen that the generalised body and surface forces are related to the
body moment K and couple stress vector 1 defined by, respectively,

K=nxG, l=nxs. (30)

The left-hand side of the virtual work hypothesis (23) can be written, using the first
constraint in (25), as

(5/de /5w—|— (0x-V)w) dV. (31)

The right-hand side of (31) can be rearranged so that it is in a similar form to that ex-
pressed on the right-hand side of (23). This then makes it possible to obtain expressions
for the surface force t and generalised surface force s. Firstly, it is noted that if v is the
outward unit normal to the surface S, then, by the standard tetrahedral argument [106],
it can be shown that

ti = tivy, (32)
Si = sVt Pni, (33)
where ¢;; are the components of the stress tensor and s;; are the components of what
Ericksen [34] calls the torque stress. The scalar § is arbitrary and is due to the third

constraint in (25). Calculations reveal that the stress tensor and the torque stress are
given by

ow
tij = _péz] — Wnk,i s (34)
7]
ow
Si; = s (35)
J anm

with p being an arbitrary pressure arising from the assumed incompressibility. A conse-
quent assessment of the volume integrals gives the equilibrium equations. In component
form they are

tij; +F = 0, (36)

ow ow

where A is a scalar Lagrange multiplier that arises form the unit vector constraint in
(12). Equation (36) clearly represents the point form of the balance of forces in equation
(27), while (37) can be shown to be the point form of the balance of moments given by
(29). As shown in the next section, it is generally only necessary to solve equation (37)
because (36) may be neglected in many equilibrium problems.
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1.2.4 Body forces and moments

A major simplification of the equilibrium equations (36) and (37) is possible if we con-
sider the body forces F and G to be specified functions of x and n of the forms

v, ov

F1i - ) T )

(38)

where ¥(n,x) is some scalar energy density function, as has been considered by Er-
icksen [34]. After careful manipulation of the derivatives in the equilibrium equa-
tions [34,104], the balance of forces given by equation (36) reduces to

(V—p—w); =0, (39)
once the general rule for partial derivatives [34,104]

ow  Ow ow
PS o i e N 40

has been applied. This yields an expression for the pressure p, namely,

where pg is an arbitrary constant. This ultimate identification of the pressure has the
important consequence that if F and G obey the relations in (38), then to determine
equilibrium configurations in nematic liquid crystals one has to solve only equation (37).
In this case we can always neglect equation (36), unless there is a desire to compute
forces. Notice that when this is the situation (clearly so if ¥ = 0) then equation (37)
in conjunction with the constraint in equation (12) results in four equations in four
unknowns, namely, the three components of n and the Lagrange multiplier \.

In ordinary circumstances, as remarked by Ericksen [34], gravitational or electro-
magnetic fields are expected to produce the forces F and G. For example, in the case
of an external gravitational field in the absence of electromagnetic fields

o,

E:_ y
(‘9@-

Gi=0, U,=U,(x), (42)

where 1), is the gravitational potential.

However, in many practical applications of interest when the effect of gravity is
neglected, an external body force F and external body moment K can arise from the
presence of a magnetic field H. It is possible to introduce the magnetic potential v, as

Up(n,x) =iM-H, (43)
where the magnetisation M can be written as [34, 104]
M:XmJ_H_’_Xa(n'H)nv Xa = Xm; = Xmys (44>

where the coeflicients x,,,, and X.,, denote the diamagnetic (negative) susceptibilities
when the magnetic field and the director are parallel and perpendicular, respectively.



The magnetic anisotropy is defined by x,, which is generally positive but may be nega-
tive [104]; in general, x, is relatively small and consequently the influence of the liquid
crystal upon the magnetic field can be mostly ignored, but not vice-versa. The magnetic
potential can then be formulated as

W, = bxa(n- HY, (45)

when constant contributions to the potential that are independent of the orientation of
n are ignored. In this situation we have
oY, ov,,

F = = 4
=T 6= (46)

with 9/0x; denoting the usual notion of partial derivative of ¥, with respect to z; when
n and x are treated as independent variables. The resulting body force F and body
moment K due to an external magnetic field may then take the forms [34]

F=M-(VH), K=nxG, where G=y,Hn- -H). (47)

It follows from equations (42) and (46) that in general we can incorporate the effects of
gravity and magnetic fields by considering

oy, ov

Fi - ) i )

U=—pl, + U, (48)

when the density p is constant. Further, since ¥ = W(n,x), it is seen that, using the
general definition for partial derivatives in (40),

ov oV
F; + Gjnj,z' = 8_1’Z + a_njnj,i = \Ij,ia (49>
which then allows the pressure to be identified as stated in equation (41).

There are analogous expressions and results for an electric field E. We can define
the electric displacement D by

D=¢,E+e¢(n-E)n, €a = €| — €L, (50)

and set

V,=iD-E, F=D-(VE), G=¢cE@n- E), (51)

where the coefficients ¢ and €, denote the dielectric permittivities when the electric
field and the director are parallel and perpendicular, respectively, and ¢, is defined as
the dielectric anisotropy. The expression for ¥, that is analogous to that in equation
(45) for magnetic fields is

U, = te,(n-E)?, (52)

when constant contributions to the potential that are independent of the orientation
of the director are ignored. If either of the fields H or E is assumed to be uniform
and independent of x then the body force F associated with the corresponding field is
zero. It should be mentioned here that one important difference between the effects of
magnetic and electric fields upon liquid crystals is that an electric field can give rise to
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significant dielectric permittivities, as pointed out by Deuling [30]; in such circumstances
an allowance must be made for the influence of the liquid crystal upon the applied field
by employing an appropriate reduced version of Maxwell’s equations [30, 104].

We close this section with the remark that the magnetic and electric energy densities
are often simply obtained as w,, = —W¥,, and w, = —V, and that in many instances in
static equilibrium it is immaterial whether these fields are incorporated via an energy
density formulation or potential formulation. However, in dynamics, as will be seen
below, the use of a potential formulation is generally more convenient.

1.2.5 Reformulation of the equilibrium equations

It is very common in liquid crystal theory to use a representation for the director that
automatically ensures n is a unit vector, for example,

n = (cos cos ¢, cos O sin ¢, sin 0), -5 <03, 0<¢<2m, (53)

where n can be interpreted as a point on the unit sphere. This type of representation en-
ables a reformulation which simplifies the equilibrium equations. For example, following
Ericksen [37], suppose in general that

n = f(0,¢), f-f=1. (54)
The constraint that f is a unit vector leads to
ofi ofi
nig =0, nZagb—O. (55)

The notation n for the director in the original description is retained and we adopt the
notation f to describe the director when using 6 and ¢. It must also be the case that

of of

@Xé)_(b#o’ (56)

to ensure that the tangent vectors in the resulting unit sphere description do not coincide,
so that # and ¢ can act as local coordinate directions. As Ericksen [37] points out, any
such characterisation is somewhere singular, and so some exceptional directions will fail
to be represented. Some care must therefore be exercised when using equations that
rely upon the conditions (54) to (56) for their derivation.

In an obvious notation, the bulk energy density and any of the aforementioned
potentials, generically denoted by &, can be reformulated, respectively, as

w=w(n,Vn) =a4(0,$,V0,Ve),  U(n,x)=V(b,s x). (57)

It is possible to show that [104]

ow\ ow _ ow \  Ow | dfy (58)
8071' g 00 n ﬁnkﬂ- i E)nk 00 7
o5\ 0w [( 0w\ ow]af (59)
a¢,i i o B ank,i g ony | 09 '



If we additionally suppose that the body forces F and G are specified functions of x
and n so that the relations in (38) hold, then, in particular, we have

G; = g—i, U = ¥(n,x). (60)

and it is then seen that

oV OV fy :Gk% oV U dfy _Gkafk

90 Ong 00 90’ 96  ony 09 BY) (61)

These results can be employed with those in equations (58) and (59) to show that the

three equilibrium equations that occur in (37) can be multiplied appropriately by % 8f’
and af L to reduce them to an equivalent simpler reduced set of two equations
oW\ oW o O O aqf
wy _ow, 9% L —0, (62)
00 ; p 00 00 00, i 3¢ ¢

with the Lagrange multiplier A automatically being eliminated because of condition (55).
These reformulated equations are more tractable but necessarily hold only whenever
af L £ (), %J;' # 0 and the condition (56) holds, which highlights the previously mentioned
Concern over the validity of this formulation when special directions of the director may
require more careful treatment.

In some circumstances the total energy density may also depend on the spatial
variable x, as may be the case for the magnetic or electric energies discussed above. This
situation is a special case of that generally encountered when curvilinear coordinates
are introduced. Let #; and 0y denote the two orientation angles for the director and let

€ = (&,&,&3) denote the curvilinear spatial coordinates so that [37,63]

X:X<€>, n:f(Hl,Qg,E), (63)

and set
’&7(91,62,V91,V02,5) :U)J, (64)

where J denotes the usual Jacobian

ox

J=]=. 65
= (65)
The total energy W can then be reformulated as
W = / w d[L‘leEle'g = /N{Edfldggdfgﬂ (66)
Q Q

with © being the transformed spatial domain. Obviously, if £ = x then J = 1 so that
the case when the energy is also dependent upon x is included in this discussion. Cal-
culations similar to those mentioned above show that the equilibrium equations become

ow ow  OU
(aew)i - 50 + e 0, a=12 (67)
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where, adopting the earlier supposition that G satisfies (60), we have set

\11(01,92,5) = J\I[(H,X), (68)

and a comma now denotes partial differentiation with respect to &;, with the same
comments after equation (62) also being applicable here.

It is evident that equations (62) and (67) are the appropriate Euler-Lagrange equa-
tions for an energy integral of the form

W:/(w—\II) qv. (69)

1.2.6 Boundary conditions

The boundary conditions for the director alignment at a liquid crystal-solid interface
can essentially be of two types, either strong or weak anchoring [48,104]. Strong an-
choring occurs when the director orientation is prescribed at the boundary by a suitable
treatment of the solid surface; this alignment is always supposed fixed. Frequently,
the director has a fixed direction in the plane of the surface (planar) or perpendicular
(homeotropic) to it; it need not always be so, and there are examples of strong anchoring,
called conical anchoring, where the director at a surface makes a non-zero fixed angle
with the tangent plane of the surface. (cf. [48, p.160] and [104]). On the other hand,
weak anchoring, first proposed by Rapini and Papoular [95], supposes that a weak an-
choring energy is available at the liquid crystal-solid interface, and presumes a balance
between the moment (or torque) in the liquid crystal due to the Frank—Oseen energy
density and that arising from this interfacial energy. Such a weak anchoring energy,
which we will denote by ws, can be employed to determine how the angle between the
director and the solid, or other interface, may vary under the influence of applied fields,
for example.

The simplest assumption is that w, has a dependence upon the director n relative
to some proposed preferred direction at the interface, say n,; equivalently, and quite
commonly, we can equally consider w, to depend upon n and v where v is the outward
unit normal at the interface. Ome version of a weak anchoring energy that proves
convenient (and is equivalent to that introduced by Rapini and Papoular) can be written
as [104,107]

ws = 1701+ w(n-v)?), (70)

where 79 > 0 and w > —1. For —1 < w < 0 the weak anchoring surface energy
ws will favour a director alignment parallel to v so that the energy is reduced and
the favoured orientation of n will be homeotropic. When w > 0, ws will favour an
orientation orthogonal to v, indicating that a homogeneous alignment tangential to
the boundary or interface will be favoured. These comments are equally valid in an
analogous fashion when v is replaced by a preferred interfacial director alignment n,,.
Rapini and Papoular [95] estimated Tow ~ 1073 J m~?2 as a general value; for the nematic
liquid crystal 5CB, Yokoyama and van Sprang [110] experimentally calculated 7w to
be around 4 x 107° J m~2. Reviews of various techniques for measuring the anchoring
strength have been written by Yokoyama [109] and Blinov, Kabayenkov and Sonin [16].
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The total energy for a sample of liquid crystal occupying the region V' having bound-

ary S is given by
W:/wm+/%w, (1)
1% S

which will generally lead to two sets of coupled equilibrium equations, one set arising
solely from the equilibrium equations for the bulk energy (namely, those stated in equa-
tion (37)) and the other arising from both the bulk and surface energies. This second
set of equations stems from the equilibrium boundary condition which is given by

ow Owg

v+ = Tn; on S, 72

ani,j J 871, 7 ( )
where 7 is an arbitrary scalar function; this requirement was first mentioned by Jenkins
and Barratt [55]. The weak boundary condition (72) can also be reformulated using the
orientation angles #; = 6 and 0y = ¢ introduced in equation (53). The result, in an
obvious nomenclature, is [104]

o0, 00,

a6,." " .,

=0, a=1,.2. (73)

We mention a particularly prevalent special case. Consider a liquid crystal sample
confined between parallel planar boundary plates placed a distance d apart at z = 4+d/2
and suppose that ¢ = 0 and 6 = 0(z) in equation (53). Then v = (0,0, £1) in accordance
with z = £d/2 and equation (73) then reduces to the two conditions

ow  Ow, d ow 0w, d

— — =0 at =—= — =0 at == 74

90~ 0 AT T ol wET g (74)
where a prime denotes the derivative with respect to z. Of course, if one surface, at
z = —d/2 for example, has strong anchoring or a weak anchoring energy that differs

from that at the other surface at z = d/2, then the corresponding condition at z = —d /2
in equation (74) either does not arise, as in the case for strong anchoring, or is adapted
to incorporate the appropriate form for @, at z = —d/2. If no anchoring conditions,
strong or weak, are prescribed then the requirements in (74) are seen to be the usual
natural boundary conditions that arise from the calculus of variations [104,107].

It has become apparent, nevertheless, that weak anchoring can be more complex
because surface anchoring in nematics can be bistable, as reported by Jerome, Pieranski
and Boix [56] and Monkade, Boix and Durand [84]. Nobili and Durand [86] have sug-
gested that more a complex form for the surface energy must be considered and have re-
ported measurements from a more sophisticated model, as have Sergan and Durand [100]
who have also described further measurements. A more extensive discussion on the mod-
elling of weak anchoring that incorporates the combinations of director ‘tilt and twist’
at the boundary can be found in the articles by Zhao, Wu and Iwamoto [113,114].

1.2.7 Extensions to nematic equilibrium theory

The energy for nematics given in equation (18) has its analogue for chiral nematics, also
called cholesterics, given by

Wep, = %Kl(v -n)? + %Kz(n -V xn+q)?+ %Kiﬂ(n x V x )’

+ 3(Ks + K)V - [(n-V)n— (V- -n)n] , (75)
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where ¢ is related to the natural pitch p of the characteristic helical configurations that
occur in cholesterics through the relation p = 27/q (see [48,104] for further general
details). Depending on the material, the pitch p can range in magnitude from 200 nm
upwards with typical values being around 600 nm [48] and so it is frequently much larger
than the molecular dimensions. The continuum theory as outlined above for nematics
has its clear analogue when w is replaced by w.,. Mention should also be made of
the results for a weak anchoring surface energy model that has been developed for
cholesterics by Belyakov et al. [11-13] as an alternative to the Rapini-Papoular form for
weak anchoring.

The Frank—Oseen energy can be used to identify basic defects in nematic liquid
crystals and these were classified by Frank [41] in 1958. In 1991 Ericksen [38] proposed
an extension to the Frank-Oseen theory in order to improve the modelling of defects.
Ericksen’s model incorporates the order parameter and proposes an energy density of
the form

w=w(s,n,Vs,Vn), (76)

where s is a scalar function that represents the degree of order or alignment. In this
theory, the scalar s is permitted to vanish at point or line defects in such a way that
the energy remains finite, which then avoids the infinite energies that can occur when
modelling defects with the Frank—Oseen version of the energy. A relevant account, and
developments of, this approach may be found in the book by Virga [107].

1.3 Dynamic Theory for Nematics

The earliest attempt at a dynamic theory for nematic liquid crystals was made by
Anzelius [3] in 1931, although the first widely accepted dynamic theory was formulated
much later by Ericksen [33] in 1961 using balance laws from the classical theory of
continuum mechanics based upon a generalisation of the equilibrium theory discussed
above. This dynamic theory was completed in 1968 by Leslie [61], who derived consti-
tutive equations and proposed expressions for the various dynamic contributions, after
he considered constitutive equations for anisotropic fluids in 1966 [60]. A more concise
derivation of the dynamic theory for nematics was later published by Leslie [64] in 1992;
details can also be found in [104].

As in the equilibrium case discussed above, it will be assumed that the nematic
is incompressible. For a volume V' of nematic bounded by the surface S the three
conservation laws for mass, linear momentum and angular momentum are, respectively,

D
E/Vpdv = 0, (77)
D
—/pvdV = /deV—l—/tdS, (78)
Dt Jy v s
D
— [ pxxVv)dV = /p(xxF+K)dV—|—/(xxt+l)dS, (79)
Dt Jy v s

where p denotes the density, x is the position vector, v is the velocity, F is the external
body force per unit mass, t is the surface force per unit area, K is the external body
moment per unit mass, 1 is the surface moment per unit area (also called the couple
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stress vector) and D/ Dt, also denoted by a superposed dot, represents the usual material
time derivative defined by

D 0 0
Di ot Vox (80)
No ‘director inertial term’ has been incorporated since it is generally considered to be
negligible in nematic liquid crystal flow problems. There is a general convention in the
liquid crystal literature that F appears in static theory while pF appears in dynamic
theory: this means that in statics F represents the external body force per unit volume
while it represents the external body force per unit mass in dynamics. An analogous
statement applies to the external body moment K.
If v denotes the outward unit normal to the surface S, then, similar to the situation
in equation (32), the surface force ¢; and surface moment [; are expressible in terms of
the stress tensor ¢;; and couple stress tensor [;;, respectively, through the relations

ti = tijVj s lz = lijVj . (81)

The mass conservation law (77) can be shown to reduce to the usual incompressibility
condition

Vv=0, (82)

and the density p can then be considered as being homogeneously constant throughout
any given volume V. After detailed manipulations that involve transport theorems, the
balance of linear momentum (78) and balance of angular momentum (79) reduce to, in
point form,

pv; = pFi + 1555, (83)

and
pKZ -+ eijktkj =+ lij,j = O y (84)

respectively.

It is relevant at this point to mention some key concepts related to different angular
velocities that occur in anisotropic fluids that are absent from classical isotropic con-
tinuum theories. The Eulerian description of the instantaneous motion of a fluid with
microstructure employs two independent vector fields. The first is the usual velocity
v(x,t) and the second is an axial vector w(x,t) which, in the case of nematic liquid
crystals, represents the local angular velocity of the director n at position x and time
t. More details on this terminology, in the context of polar fluids, can be found in the
review by Cowin [26]. This is in contrast to the classical isotropic continuum theories
where the only independent field is the velocity v of the fluid because the angular ve-
locity in such traditional theories equals one half of the curl of the velocity. We denote
this particular classical angular velocity by w, defined by

W =1V xv, (85)

and refer to it as the regional angular velocity, to distinguish it from other angular
velocities. It is a measure of the average rotation of the fluid over a neighbourhood
of the director. The angular velocity of the director relative to the regional angular
velocity in which the director is embedded is denoted by w and is defined by [26, 104]

W=W—-W=w—3V XV, (86)
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The quantity w is called the relative angular velocity and is introduced to measure the
difference between the local angular velocity w of the liquid crystal director and the
regional angular velocity w of the fluid in the neighbourhood of the director.

It proves convenient to introduce The rate of strain tensor A and vorticity tensor W
in the usual way by

A=L(Vv+(Vv)"), W=1(Vv—(Vv)), (87)

where the index 7" denotes the transpose. The vorticity tensor is also sometimes called
the spin tensor or angular velocity tensor. Following Leslie [64], the vector N is intro-
duced and defined by

N =w x n. (88)

It can be shown [104] that this definition is equivalent to
N =1 — W, (89)

this being the form discussed originally by Ericksen and Leslie. In the terminology used
by Truesdell and Noll [106], N is called the co-rotational time flux of the director n; it
is, nevertheless, important to recognise the interpretation of IN in the context of relative
angular velocities as indicated by equations (86) and (88), in which case it is clear that
N provides a measure of the rotation of n relative to the fluid.

At this level of description, Leslie [64] introduced a rate of work hypothesis. This
assumed that the rate at which forces and moments do work on a volume of nematic
will be absorbed into changes in the nematic energy w or the kinetic energy, or will be
lost by means of viscous dissipation. The rate of work postulate is taken to be

D
/p(F-V+K~W)dV+/(t~V+l'w)dS i /( SPVV 4w dV+/DdV (90)
1% s
where D is the rate of viscous dissipation per unit volume, also called the dissipation
function; D is always assumed positive. It is known that the material derivative of n
satisfies the relation
n=wxn, (91)

a well-known consequence of n being a unit vector. With the aid of the relations in (81)
and simplification through the expressions (83) and (84), the rate of work hypothesis in
(90) can be expressed in point form as

tijv; 5 + lijwi,j — W€tk = W+ D, (92)

a result that can then be exploited to obtain expressions for the stress and couple stress.

It is possible to express the material derivative of w in terms of velocity gradients
and the angular velocity and its gradients. After much intricate calculation [64,104] and
an application of the Ericksen identity (20), this leads to the conclusion that the stress
tensor ¢;; and couple stress tensor /;; can take the forms [64]

ow -
tij = —p (Sij — W np,i + tij, (93)
Y2
ow
lij = 6zpqnpa + ll]7 (94)

q.J
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where p is an arbitrary pressure arising from the assumed incompressibility and ¢;; and
l;; denote possible dynamic contributions. In the terminology of Leslie [65,67], #;; is
called the viscous stress. The expressions in (93) and (94) allows the result in (92) to
reduce to

Eijvi,j + iijwm' — wieijkfkj = D Z 0, (95)

given that D is positive. This inequality is of crucial importance in the constitutive
theory and imposes restrictions upon the forms of the dynamic terms.

1.3.1 The viscous stress in nematics

The simplest forms for the viscous parts of the stress and couples stress that are consis-
tent with experimental experience assume that ¢;; and /;; depend only on A, n and w,
but not on the gradients of w. It then follows directly from the inequality in (95) that

li; =0, (96)
and hence the viscous dissipation inequality in (95) reduces to
fijvi,j - wieijkfkj =D 2 0, (97)

which further restricts the contributions to the viscous stress fij. It can be shown that
A, n and N are material frame-indifferent and that the aforementioned dependence of
t;; upon A, n and w can be replaced by dependence upon A, n and N. The required
material frame-indifference of #;;, combined with nematic symmetries and an assumed
linear dependence upon A and N, leads to the identification of the viscous stress in its
most widely adopted and well known form given by [64, 104]

fij = ozlnkAkpnpnmj + OéQNinj + ozgn,;Nj + 044142'3'
+ 06571inka + a6niAjknk. (98)

The coefficients aq, as,..., ag, are called the Leslie viscosity coefficients, or simply the
Leslie viscosities. They are dynamic viscosities. For notational and physical reasons, it
is convenient to define the viscosities

Y1 = Q3 — Q2, Y2 = Qg — Q5. (99)

The coefficient v is called the rotational viscosity (or twist viscosity) while 7y, is referred
to as the torsion coefficient. Moreover, inserting the expression (98) into the inequality
(97) forces restrictions in the relative signs of the Leslie viscosities and it is then possible
to deduce that [60,104]

Y1 =3 — Qo

o7}

204 + a5 + g

200 + 3oy + 205 + 205
4y (20 + s + )

0,
0,
0,
0,

VvV IV IV IV IV

e N e T
—_
]
[\

—_— — ~— ~— ~—

(a2 + s +72)°.
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Parodi [91] proposed, via Onsager relations, that the viscosity coefficients should be
further restricted by the relation

Yo = Qg — Q5 = Qo + (g, (105)

a result that was subsequently obtained by Currie [27] by a stability argument. This
reduces the number of independent viscosities to five rather than six and often leads
to some simplification of the theory. It is a generally accepted relation in the theory.
When the Parodi relation (105) holds, the viscous dissipation function, defined by the
left-hand side of the equality in (97), can be written down explicitly to arrive at

D = aq (niAijnj)Q + 2’72NZ'AZ‘]‘TL]' + Oé4Aiinj
+ (a5 -+ Ck@)ﬂiAijAjknk + flezNz Z 0. (106)

In many cases it is simpler to deduce particular viscosity inequalities by calculating the
dissipation inequality for D explicitly from (106) rather than from the inequalities in
(100) to (104).

1.3.2 The dynamic equations for nematics

It is possible to combine the results in equations (30), (81), (93), (94), (96) and use
the Ericksen identity (20) to derive from equations (83) and (84), respectively, the final
forms for the balances of linear and angular momentum. They are given by

pv; = pF; — (p+w); + ginji + Gingi +tij 5, (107)
ow ow
- gi + Gi = An;, 108
(8nm )J 877,2 ot " ( )
where
gi = = Ni — 12 4ipny . (109)

The scalar function A\ is a Lagrange multiplier which can usually be eliminated or eval-
uated by taking the scalar product of equation (108) with n. These equations, in
conjunction with the constraint from (12) that n is a unit vector and the incompress-
ibility condition (82) that arises form the conservation of mass, provide a complete set
of dynamic equations for nematic liquid crystals.

The number of unknowns in the dynamic theory equals the number of available
equations. The unknowns are the velocity v(x,t), the director n(x,t), the pressure
p(x,t) and the Lagrange multiplier \. Therefore the total number of unknown quantities
is clearly eight: there are three arising from the components of v, three from n, one from
p and one from A. The director constraint (12) and the incompressibility condition (82)
provide two equations while the balances of linear and angular momentum in equations
(107) and (108) provide six equations. There are therefore eight equations to be satisfied,
and this matches the number of unknowns.

We remark that if the body force and moment satisfy the relations

ov ov
n 81:/ Gl B ani’

22 U= —ply+ Uy, (110)
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when p is constant (cf. the notation used for the equilibrium case above in Section 1.2.4)
then equation (107) reduces to the simpler form

pvi = =P+ Gingi + tij g, (111)

with
p=p+w-—V, UV=—pU, +V,, (112)

where p is an arbitrary pressure. This follows from an identity analogous to that in
equation (49) with F replaced by pF.

The boundary conditions for dynamic theory, which may include weak or strong
anchoring boundary conditions on the director, are usually supplemented by the classical
no-slip boundary conditions on the velocity v; for example, at a solid interface at rest
it is assumed that v = 0 on the boundary.

1.3.3 Reformulation of the dynamic equations

The Ericksen—Leslie equations summarised above can be reformulated in a manner sim-
ilar to the reformulation of the equilibrium equations in Section 1.2.5. Many of the
technical details can be found in detail in [104]. Firstly, we note that Ericksen [37]
pointed out that when the Parodi relation (105) applies then the vector ¢; and the vis-
cous stress #;; in equations (109) and (98) can be obtained directly from the dissipation
function D (which we can accept for our purposes as being defined by equation (106)),

through the properties

. 10D - 10D
9i = 2 aTLZ ’ e 281),’7]' '
We can again adopt the notation from equations (53), (54) and (57) and further intro-
duce a rescaled dissipation function D defined by

(113)

D(VV 0, o, 0 qb) =D(A,n,N). (114)
In addition to the aforementioned reformulations we record here that
of; Ofk Ong;
y 0., —2 ) = =, 115
"9 Dy (aea ) 9., (115)
0 0
ng = ﬁ % (b , (116)

so that, in particular, by the first result in (113),

0D _10Ddw _ .0  OD_10D0%w _ .0
06 — 200, 06 Y00 0p 200k 94 Yo¢
Of: Of; oD oD
ginji = g; 89]0 yanQSz— ge,z‘—a—éﬁb,i- (118)
Further, using the expression for G; in equation (110),

ov OV of, of; oV OV of, of;
oY _ — o _ g, 11
a0 omon %o ™ 5 Tamae  Yas (119)
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Combining the results from (58), (59), (117) and (119) and employing calculations
similar in style to those required to obtain the expressions in (62), we see that

ow ow O fr
(3711” )Z " ons + gk + Gk] 0 (120)

0B\ 0® 9D OV
00, ), j

00 98 00

accompanied by an analogous result in terms of ¢ also. Therefore by equations (55) and
(108) the balance of angular momentum reduces to the two equations

O o 0D 0
(807i>7i—%—£+% = 0, (121)
O ow 9D 0U

N 122
<a¢,z- > 56~ 05 90 (122)

while with the aid of the relations (113), (114)and (118) the balance of linear momentum
(107) becomes

oD oD oD
Vi = —D,i+ ——0i——.i, i1 =1,2,3, 123
P P (aw4>, 96 &¢¢’ 2
where ~
P=p+d— . (124)

These alternative forms given in (121), (122) and (123) for the main balance equations
provide a complete set of dynamic equations that can be deployed more easily and
rapidly, remembering, of course, that under the assumption of incompressibility the
constraint V - v = 0 must also hold.

1.3.4 Extension to the dynamic theory of biaxial nematics

Many aspects of the dynamic theory for nematics can be extended to the biaxial nematic
phase of liquid crystals. The possibility of a biaxial nematic phase was first raised in
1970 by Freiser [42,43] and the earliest experimental results were obtained by Yu and
Saupe [112] in 1980. Other early reports followed on the synthesis of thermotropic biaxial
nematics (see, for example, [23,24,77,93]) and a review and discussion of such materials
was made by Luckhurst [74]. Saupe [99] appears to have made the first attempt at a
biaxial continuum theory, followed by other formulations developed by Liu [73], Kini [57],
Govers and Vertogen [51-53], Chauré [25] and Leslie, Laverty and Carlsson [70]. These
authors essentially obtained the same continuum theory from different viewpoints, as
discussed by Leslie and Carlsson [68], who theoretically examined flow alignment in
a biaxial nematic. There has recently been a resurgence of interest in the continuum
modelling of biaxial nematic liquid crystals, due largely to emerging experimental results
that have appeared in the literature [1,76,82,101,111]. A series of comments on many of
these results has been made by Luckhurst [75]. A brief summary of the biaxial nematic
continuum equations can be found in [5].
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1.4 Continuum Theory for Smectic Liquid Crystals

This section reviews some basic results from smectic liquid crystals. It is principally
concerned with the liquid crystal phase known as smectic C (SmC).

1.4.1 Smectic C liquid crystals

Smectic liquid crystals are layered structures that have a well defined interlayer distance.
Smectics are more ordered than nematics and the smectic phase generally occurs at a
temperature below that for which the same material will exhibit a nematic phase. Here
we shall be considering only the smectic C liquid crystal phase, although it should
be mentioned that other smectic phases have also been classified; see de Gennes and
Prost [48] for details. A brief survey on the development and classification of various
smectic phases has been written by Sackmann [98]. Much of the original continuum
theory for smectic phases was initiated by the Orsay Group in the 1970s (see [48]),
who were the first to present an energy density for SmC liquid crystals based on small
perturbations of planar aligned samples of SmC [87]. Leslie, Stewart and Nakagawa [71]
formulated an energy density for SmC that was not restricted to small perturbations,
yet is identical to that introduced by the Orsay Group when it is suitably restricted.

(2) (b)
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Figure 2: Schematic diagrams of SmC liquid crystals. The molecules are equidistantly
spaced in layers as shown. In SmC the director n makes an angle 6 to the local unit layer

normal a.

In isothermal SmC liquid crystals the director n is tilted at a fixed angle 6 relative
to the unit layer normal, denoted by a, as shown in Fig. 2(a) (6 is generally temperature
dependent). The normal a is also referred to as the density wave vector. The director
continues to be defined as the average direction of the molecular alignment and n and —n
remain indistinguishable, as in nematics. In non-chiral SmC liquid crystals the director
is often uniformly aligned as shown in the Figure. The smectic interlayer distance may
be anything from something close to the full length of the constituent molecules up
to about twice their length [48, p.19] (typical values may be in the range 2~ 80 nm).
The tilt angle 6 is commonly called the smectic cone angle because the director can be
oriented around a fictitious cone of semi-vertical angle § as shown in Fig. 2(b). The
vector ¢ is introduced as the unit orthogonal projection of m onto the local smectic
planes; it further proves convenient to introduce the unit vector b defined by b = a x c,
also shown in Fig. 2(b). It is easily seen from the geometrical arrangement that n can
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be written as
n =acosf + csind, (125)

which is often useful when making comparisons with the results from nematic theory.
The phase known as smectic A (SmA) liquid crystals occurs when 6 = 0.
It is clear that a and ¢ are mutually orthogonal unit vectors and so they are subject
to the constraints
a-a=1, cc=1, a-c=0. (126)

Further, in the absence of any singularities or defects in the smectic layers the unit layer
normal a is additionally subject to the constraint

Vxa=0, (127)

a requirement first identified by Oseen [89] for SmA liquid crystals and later exploited
by the Orsay Group [87] and de Gennes and Prost [48] for general planar layers of SmC.
A general justification of this result can be found in [104]. Notice that the constraint
(127) is equivalent to the condition a; ; = a;; in Cartesian component form.

As in nematic theory, an energy density is presumed to exist and satisfy certain
symmetry requirements. The energy density for non-chiral SmC is of the form

w = w(a,c,Va, Vc), (128)

with the total free energy being given by
W = / w(a,c,Va,Ve)dV, (129)
1%

where V' is the sample volume. Similar to the construction of the nematic energy,
the energy density must be invariant to arbitrary superposed rigid body rotations and
therefore

w(a,c, Va,Vc) = w(Qa, Qc, QVaQ”, QVeQ’), (130)

where Q is any proper (det Q = 1) orthogonal matrix, Q@ being its transpose. Moreover,
for non-chiral SmC the requirement in (130) must additionally hold for any orthogonal
matrix @ (det @ = £1). The energy also has to be invariant to the simultaneous changes
in sign

a— —a and c— —c, (131)
this being an invariance that arises from a consideration of the symmetry invariance
required when n is replaced by —n. The resulting energy density w for non-chiral SmC
then takes the form stated by Leslie, Stewart, Carlsson and Nakagawa [71]

w = $K(V-a)’+3K(V-¢c)’+1K;3(a-V xc)’ + 1Ky(c- V x ¢)?
+1Ks5(b-V xc)’+ Kg(V-a)(b-V xc)+ Kr(a-V xc)(c-V xc)
+K3(V-c)(b-V xc)+ Ko(V-a)(V-c), (132)

where the K;, i = 1,2,...9, are elastic constants. As in nematic theory, it is always

supposed that
w(a,c,Va,Ve) > 0. (133)
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Other equivalent forms for the energy in terms of any two of the vectors a, b and c
are available [71] (including alternative Cartesian component forms) and these allow
comparisons with results across the literature, particularly the Orsay Group [87], Rap-
ini [94], Dahl and Lagerwall [28] and Nakagawa [85]. One alternative form for w that
can be constructed exclusively in terms of the vectors b and c is particularly revealing.
It is given by [20,71]

w = %Alg(b -V x C>2 + %A21<C -V x b)2 +A11<b -V x C)(C -V x b)
+1B(V-b)? + 1By(V-¢)> + 1By [J(b-V xb+c -V xc)]
+B15(V-b) [3(b-Vxb+c: -V xc)]
+C1(V-c)(b-V xc)+Cy(V-c)(c-V xb), (134)

where the elastic constants are those introduced by the Orsay Group [87], except that
for notational convenience we have set A;; = —%A?fsay and C) = —CY™*%_ This allows
a direct physical interpretation of the elastic constants, as detailed in Carlsson et al. [20]

and [104], and a direct comparison with the original Orsay Group formulation provided
we set

K, = A, Ky = Bs, K3 = By,
K4 = Bs, K5 = 2A1+Ap+As+Bs, Kg=—(An +A21+%BS)7 (135)
K7 = —Bi3, Kg=C+Cy—Bis, K9 =—Cs.

Briefly, the terms associated with the coefficients A9, A1, By, By and B3 represent five
independent deformations of uniformly aligned planar smectic layers with the remaining
terms interpreted as coupling terms. The non-negativity of w leads to inequalities in an
analogous manner to those for nematics. It can be shown that (cf. [20,87,94])

A127A217B17BQaB3 Z 07 (136)
ApAy — Al > 0, (137)
B\Bs — Bi, > 0, (138)
ByA, —C? > 0, (139)
ByAy —C; > 0 (140)

Atkin and Stewart [6] also deduced that
A12 + A21 -+ 2A11 2 0 and A12 -+ A21 — 2A11 Z O, (141)

which further implies

[Aui| < 5 (Aiz + Ao (142)

The first inequality in (141) was derived by Carlsson et al. [20] for the special case when
the smectic tilt angle 6 is assumed small. It is very common for the quantities Ao+ A1y
and As; + Ay1 to appear in calculations and it is important to recognise that they cannot
be negative simultaneously because of the first inequality in (141). Additional analogous
inequalities can be derived [6]:

B+ B3+2B;3>0 and  |Bis| <3 (Bi+ Bs), (143)
By+ A, +20,>0 and |C1| < 3 (Ba+ Asa), (144)
By + Ay £20, >0  and |Cs| < 2 (By+ Ax). (145)

22



One final set of properties for the elastic constants is worth noting. As the smectic
tilt angle # tends to zero the elastic energy ought to converge to that for the SmA phase,
given by [48,103]

wa = 3K,(V - a)®, (146)

where K; > 0 is the usual splay elastic constant of nematic theory. Carlsson et al. [20]
were able use the techniques introduced by Dahl and Lagerwall [28] in order to postulate
the tilt angle dependence of the SmC elastic constants for small §. The results showed
that

A = K1+ Apd?, Ay = Ky + Apnb?, Ay =—K, + 4607,
B, = B,6?, By = By#?, By = Bs#?, (147)
Bl3 = §13937 Cl = 6167 CQ = 6207

where the elastic constants K, A;, B; and C; are assumed to be only weakly temperature
dependent (@ is temperature dependent). These approximations are useful when trying
to establish what ought to be the dominant elastic constants in particular problems
in the SmC phase. Some preliminary measurements of B, and the combination of
elastic constants A;; + A;; have been reported by Findon and Gleeson [40]. A more
detailed discussion on magnitudes and cone angle dependent estimates for smectic elastic
constants can be found in Stewart [104], largely based on the work contained in [20, 28].

It is worth remarking that three surface terms have been identified for the SmC
phase, namely [71],

S1 = V- [e(V-c)—(c-V)c| = (cejj —cicig)i, (148)
SQ = V . [a(V . C) — (a . V)C] = (CLZ'C]‘J‘ — CL]‘CZ'J)J‘ s (149)
Sg = V. [(V . a)a] = (Cbi’i)2 — Qi Q45 - (150)

1.4.2 Equilibrium equations

A principle of virtual work, analogous to that for nematics stated in equation (23), can
be adopted. Following the work of Leslie, Stewart and Nakagawa [72] it can be assumed
that the variation of the total energy at equilibrium satisfies a principle of virtual work
for a given volume V' of SmC given by

(5/de = / (F-ox + G*-Aa+ G°-Ac)dV
1% v
—l—/(t-éx—irs“-Aa—i—sC-Ac) ds, (151)
S

where, analogous to the quantity in equation (24),

Aa = da+ (6x-V)a, Ac = dc + (6x-V)c, (152)
with 0x being the virtual displacements. In the above, S is the boundary surface, w is
the SmC energy density, F is the external body force per unit volume, G* and G¢ are

generalised external body forces per unit volume related to a and c, respectively, t is the
surface traction per unit area, and s® and s® are generalised surface tractions per unit
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area related to a and c, respectively. The virtual displacements dx and the variations
in the vectors a and c are also subject to the constraints

V- (6x) =0, (153)
a-da =0, a-Aa =0, c-oc =0, c-Ac =0, (154)
a-dc +c-da =0, a-Ac+c-Aa=0. (155)

The requirement in (153) is due to the assumption of incompressibility and the others
follow from the constraints in equation (126). By carrying out calculations which parallel
those required in Section 1.2.3 for nematics in equations (27) and (29), it can be deduced

that
/FdV+/tdS:0, (156)
v S
and
/(xxF+a><G“+c><GC)dV+/(X><t+a><sa+c><s°)dS—0, (157)
1% s

which represent, as before, the balance of forces and moments, respectively. It follows
from these relationships that the body moment K and couple stress vector 1 can be
related to the generalised body and surface forces by, respectively,

K=axG"+cx G l=axs"+cxs" (158)

The generalised body forces G* and G° can be identified using the formulation of G for
nematics in Section 1.2.4 via the identity (125).

Similar to nematics, the surface forces can be expressed in terms of the corresponding
stress tensors and the outward unit normal v as

tio= tivj, (159)
si = a; + azc; + sy, (160)
s; = e+ aza; + S5y, (161)

where the scalar functions ay, as and ag arise from the constraints in equation (126).
Detailed calculations reveal that [72,104]

ow ow
tij = —POij + Bpepjran; — Bar i T ey i (162)
7] 7]
a ow
Sij = Cijplp + %7 (163)
ow
Sij = : (164)
J aci,j

In the above, the vector 3 is a vector Lagrange multiplier that is due to the vector
constraint (127) while p is an arbitrary pressure that arises from incompressibility. The
components ¢;; form the stress tensor and the components s; and s§; belong to torque
stresses.
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Following the method adopted for nematics, the final forms for the equilibrium equa-
tions may be stated as [72,104]

tij+F = 0, (165)
Ow 00 | G0 4 yar + s + e 0 (166)
- ' a; Ci T €ij = Y
0&1-7]- g @ai ! 7 a ak k.
ow ow
(aci,j>j ac, + GS + 7¢; + pa (167)

Equation (165) represents a balance of forces, while, similar to the static theory of
nematics, equations (166) and (167) are equivalent to a balance of moments. There are
four Lagrange multipliers that arise form the four constraints contained in equations
(126) and (127): they are the scalar multipliers v, p and 7 and the vector multiplier
B. The ‘a-equations’ in (166) are coupled to the ‘c-equations’ in (167) via the Lagrange
multiplier . Techniques for obtaining the Lagrange multipliers, particulary 3, can be
found in [104].

The details and comments in Section 1.2.4 on body forces, moments and electric
and magnetic fields in nematics are equally valid for SmC liquid crystals and follow
naturally by suitably inserting the form for n stated in equation (125). Moreover, it can
be shown [104], as for nematics above, that the balance of forces (165) reduces to an
expression for the pressure p, namely,

p+w—TU=py, (168)

where py is an arbitrary constant and, as for nematics, W(n,x) is the scalar density
function discussed in Section 1.2.4. This has the same consequence as for nematics,
in that we can then generally neglect equation (165) so that the essential equilibrium
equations reduce to the coupled equations (166) and (167). This then leaves twelve
equations from (126), (127), (166) and (167) in the twelve unknowns that are made
up from the nine components of a, ¢, and 3 and the three multipliers v, p and 7.
A reformulation of the equilibrium equations, in the style of that presented above for
nematics in Section 1.2.5, has been derived by Leslie [66].

Boundary conditions in the modelling of SmC liquid crystals are very similar to
those for nematics and the discussion in Section 1.2.6 remains relevant. There is, as yet,
little information on genuinely smectic boundary conditions, although this situation is
evidently expected to evolve rapidly in the near future.

1.4.3 Dynamic theory for smectic C

The dynamic theory for SmC can be derived in a similar fashion to that above for
nematics and so we refer the reader to [72,104] for the mathematical details. The
dynamic theory introduced in [72] can be summarised as follows. The vectors a and ¢
are subject to the constraints

a-a=1, c-c=1, a-c=0, Vxa=0, (169)
and the velocity vector v must satisfy

vi; = 0. (170)



The governing dynamic equations consist of the balance of linear momentum
pv; = pF; — i + Grang + Gicri + Graw; + Gicri + Lijj (171)

with

F=p+uw, (172)
and the balance of angular momentum, which reduces to the two coupled sets of equa-
tions

ow ow
B GO G+ s 4 e+ B = O, 173
(3%]’)7]- Pa, + G + 3§ 4+ va; + pc; + €k P (173)
0 0
( w) ~ G T e = 0, (174)
@cm g 8Ci

where the scalar functions ~, ;1 and 7 and the vector function 3 are Lagrange multipliers,
as introduced and discussed in Section 1.4.2. In the above equations F; is the external
body force per unit mass, G¢ and G¢ are generalised external body forces per unit
volume related to a and c, respectively, p is the arbitrary pressure and w is the elastic
energy density for SmC given by (132). The dynamic contributions g¢ and g are given
by

g? = -2 ()\1Df + AgCiCng + )\4141 + AGCiCpAp + TQDiC
+73¢ia, D) + Tacic, Dy + 7'5C’i) , (175)
gf = -2 (/\QDZC + )\501 + TlD;Z + T5AZ‘) y (176)

while the viscous stress ¢;; is

ty =13 + &, (177)

where ¢, and ¢} are the symmetric and skew-symmetric parts of the viscous stress given

by

f,fj = oDy + pma,Dyaia; + pa(Diaj + Dja;) + pscp,Dycic;
+a(Dfe; + chi) + ,u5ch;(aicj + ajc;)
+A1(Aja; + Aja;) + A (Cicj + Clcy) + AscpAp(aic; + ajc)
+k1(Dfej + Dic; + Diaj + Dja;)
+ Ko [apD;(aicj +ajc;) + 2apD;aiaj}
+r3 [epDs(aic; + aje;) + 2a,D5cics)
+71(Cia; + Cjai) + 72(Aicj + Ajc;)
+213¢,Apaia; + 2140, A,04¢5, (178)

&2 = M(Dfa; — Dia;) 4+ Xo(DSc; — Dic;) + AscpDi(aic; — ajc;)

+Ai(Aja; — Aja;) + Xs5(Ciei — Cicy) + AecpAp(aic; — aje;)
+71(Djc; — Dic;) + mo(Dja; — Diaj) + 130, Dy (a;c; — ajc;)
+7ac,Dy(aic; — ajc;) + 75(Ajc; — Aicj + Cia; — Ciay). (179)
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In the above expressions

Dij = 5(vij +vii), Wy = 5(vij —vja), (180)
D? = Dwaj s DZC = DZ]C] > (182)

where A and C are the smectic analogues of the co-rotational time flux of the director
in nematics (cf. equation (89)). There are twenty viscosity coefficients: the twelve
viscosities g to pus and \; to A\g are associated with contributions to the dynamic stress
which are even in the vector ¢ or do not contain c, while the remaining eight viscosities
k1 to k3 and 71 to 75 are linked to the terms which are odd in the vector c¢. A detailed
description of properties of these viscosities can be found in [19,104]. Equations (169),
(170), (171), (173) and (174) provide sixteen equations in the sixteen unknowns a;, ¢;,
Vi, P, Biy 7, v and 7.

A list of numerous restrictions to linear combinations of the viscosities, analogous to
those for nematics in equations (100) to (104), can be found in [104]. The dependence
of the SmC viscosities upon the smectic tilt angle 6 has been considered by Carlsson et
al. [19], based on the method used by Dahl and Lagerwall [28]. Details can be found
in [19,104]. It should be remarked that Osipov, Sluckin and Terentjev [90] have given
physical reasons for further observing that the viscosities A3, Ag, 73 and 74, although
not identically zero, may be set to zero in very basic problems for the SmC phase be-
cause they expect these four viscosities to be much smaller than the remaining sixteen.
Galerne, Martinand, Durand and Veyssie [45] have measured some of the smectic viscosi-
ties for the SmC liquid crystal DOBCP at 103°C. From these experimental data, Leslie
and Gill [69] deduced values for A5 and various linear combinations of the viscosities in
terms of the theoretical description given above (there are some minor miscalculations
in [69] which were later corrected [104]).

1.4.4 Extension to other related smectic theories

A more extensive discussion on an extended energy density for SmC liquid crystals
when dilation and variations in the smectic cone angle are allowed has been made by
Blake and Virga [14], McKay and Leslie [80] and McKay [79]. Further developments
in the continuum theory of the related phase of SmA liquid crystals have been made
by Martin, Parodi and Pershan [78], de Gennes [46,47], Ahmadi [2], Capriz [17, 18],
E [32], Auernhammer et al. [7-9], Stewart [105] and De Vita and Stewart [29], with
variable methods of approach but with many workers essentially following the principles
employed in the classical work of Ericksen and Leslie outlined above for nematics and
SmC. It should also be mentioned that Eringen [39] introduced a unified continuum
theory for liquid crystal phases that considered nematic, cholesteric and smectic phases
in the context of micropolar continua.

Chiral smectic C liquid crystals (SmC*) have a twist axis perpendicular to the usual
smectic C layers and are known to be ferroelectric, as first demonstrated in the experi-
ments carried out by Meyer, Liébert, Strzelecki and Keller [83] in 1975 after speculation
on the possibility of such ferroelectric liquid crystals by McMillan [81] in 1973. These
ferroelectric liquid crystals generally possess a spontaneous polarisation P which, in
terms of the model for SmC introduced above, can be written as a vector parallel to the
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vector b = ax c. It turns out that P = Pyb or P = —Pyb, where Py = |P|, and that the
sign of the spontaneous polarisation is material dependent and can be classed as positive
or negative; one generally accepted sign convention [48,58] defines P as positive if it has
the same direction as b and negative if it has the opposite direction to b. An energy
density for such ferroelectric SmC* liquid crystals, can be constructed, as discussed by
Carlsson, Stewart and Leslie [21]. The above expression w for the SmC elastic energy
density in (132) or (134) can be extended to that required for the SmC* phase by the
introduction of two additional terms. These extra chiral terms may be written as

wf = A11(5 (C -Vxc—b-V x b) = 2A11(5eipkapckcjyiaj s (183)
wy = %ng (c-Vxc+b-VxDb)=—Bsqepa,citia;, (184)

where A, and Bs are the elastic constants introduced above and the second equalities
in (183) and (184) are consequences of identities found in references [21,71]. The wave
vector ¢ satisfies ¢ = 27/p where p is the inherent helical pitch of the SmC* phase and
0 is a constant. The two terms wj and wj also correspond to the terms D, and —Ds,
respectively, discussed by de Gennes and Prost [48, p.378]. The full energy density is
then simply w 4+ w] + wj. In many instances, it would appear that ¢ can be set to zero
in planar aligned samples of SmC* [21,104] and it is worth remarking that Gill and
Leslie [49] found the term wj to be of no importance in the simple shear flow problems
that they investigated. When an electric field is introduced then the electric energy
must be supplemented by an additional important electric field contribution due to the
spontaneous polarisation that is present in the SmC* phase. This additional energy
term is given by

Wpot = —P - B, (185)

where, as before, E is the electric field. Many of the details, such as sign conventions and
the physical description and mathematical models of SmC* liquid crystals are beyond
the scope of this brief review and can be found in the books by Lagerwall [58], de Gennes
and Prost [48] and Stewart [104].
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