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Abstract. Antiferro- and ferro-electric ordering has been discovered in orthogonal smectic phases com-
posed of nonchiral bent-core molecules. These systems are the only proper fluid ferroelectrics confirmed
experimentally so far. We consider a molecular theory of proper ferroelectric ordering in isotropic, nematic
and smectic A phases and conclude that the delicate balance between the tendencies for local parallel and
antiparallel ordering of molecular electric and steric dipoles is strongly shifted in restricted geometries.
This is a reason why dipolar ordering is more likely to occur within a smectic layer. We derive model
interaction potentials for polar bent-core molecules and present the results of the mean-field theory of fer-
roelectric ordering in the orthogonal smectic phase taking into account also the molecular biaxiality. Order
parameter profiles have been calculated numerically and phase diagrams are presented which enable one
to analyze the relative importance of dipole-dipole interaction and intermolecular attraction modulated by
polar bent-core molecular shape.

1 Introduction

Ferroelectric ordering in chiral tilted smectic Liquid Crys-
tals (LCs) has been studied for decades. One notes, how-
ever, that these systems are characterized by the so-called
improper ferroelectricity which means that the sponta-
neous polarization is not a primary order parameter (that
is it does not appear self-consistently), but is induced by
the tilt in the chiral medium [1]. From the microscopic
point of view the ferroelectric ordering in chiral smectics
C∗ is not determined by electrostatic dipole-dipole inter-
actions but has a more complicated origin because the
ordering of molecular dipoles is induced by a nonpolar or-
der of chiral molecules. The corresponding intermolecular
interactions are discussed in detail in [2].

In contrast, in proper ferroelectric materials polariza-
tion is the primary order parameter and the transition
into the polar phase is determined by polar intermolecu-
lar interactions including, in particular, the dipole-dipole
ones. In principle, ferroelectric ordering may occur spon-
taneously also in isotropic and nematic phases composed
of strongly polar molecules. Such a transition into the fer-
roelectric isotropic and/or nematic phase is indeed pre-
dicted by simple mean-field theories [3–6]. On the other
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hand, polar phases of this kind have never been observed
experimentally (at least the spontaneous polarization has
not been measured directly) except for more complicated
columnar systems. One notes, however, that strong ex-
perimental evidence has recently been presented in favor
of proper ferroelectric ordering in some polymers nematic
LCs [7]. From the theoretical point of view the dipole-
dipole interaction must be very strong in order to induce
ferroelectric ordering in a fluid [4]. On the other hand,
molecules with very large permanent dipoles have a strong
tendency to form polar chains (see ref. [4] and references
therein) which is generally a more efficient way to reduce
the total free energy then the transition into the homo-
geneous ferroelectric phase in the bulk [4]. As discussed
in more detail in sect. 2, this is one of the reasons why
proper ferroelectricity is not widely observed in strongly
polar fluids.

Recently proper antiferro- [8–12] and ferro-electric [13]
ordering has finally been discovered in orthogonal smec-
tic phases composed of nonchiral bent-core molecules. Or-
thogonal bent-core smectics are the only proper fluid fer-
roelectrics completely confirmed experimentally so far. As
observed in ref. [13], the spontaneous polarization in the
ferroelectric bent-core smectic phase appears to be very
large which is consistent with large values of the orien-
tational order parameter reported very recently in [14].
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One notes that bent-core LCs exhibit a number of smec-
tic phases with periodicity of more then one layer includ-
ing the antiferroelectric orthogonal phase, random, and
possibly, the three-layer phase [15]. A phenomenological
theory of bent-core smectic phases with such periodicity
has recently been developed [16,17], but at present there
is no consistent molecular theory of ferroelectric ordering
in orthogonal bent-core smectics and even the microscopic
mechanism of such an ordering in not understood in detail.

In this paper we first discuss in sect. 2 the general
results of the molecular theory of proper ferroelectric or-
dering in isotropic, nematic and smectic A phases and
conclude that the delicate balance between the tendencies
for local parallel and antiparallel ordering of molecular
electric and steric dipoles is strongly shifted in restricted
geometries. This is a reason why dipolar ordering is more
likely to occur within a smectic layer then in the homo-
geneous nematic phase composed of the same molecules.
In sect. 3 we derive model interaction potentials for polar
bent-core molecules, and in sect. 4 we present the results
of the mean-field theory of ferroelectric ordering in the or-
thogonal smectic phase taking into account also the molec-
ular biaxiality. Finally we conclude the paper by empha-
sizing the most important outcomes and outline possible
future issues.

2 Dipole-dipole interaction and polar ordering
in complex fluids

It is often assumed that the ferroelectric ordering in smec-
tic phases composed of bent-core molecules is primarily
determined by the close packing of bent cores. One notes,
however, that packing entropy generally does not play a
leading role in thermotropic liquid crystal [18] because the
corresponding contribution to the total free energy is rel-
atively small. Indeed, in the mean-field approximation the
packing entropy of the nematic phase can be expressed as

Sp =
1
2
ρ2kBT

∫ [
θ(r12 − ξ12)

−1
]
f(ω1)f(ω2)d3r12dω1dω2, (1)

where ρ is the number density, f(ω) is the orientational
distribution function which depends on molecular orienta-
tional coordinates ω of one particle, and θ(r12−ξ12) is the
step-function which vanishes if the molecules “1” and “2”
penetrate each other and which is equal to 1 otherwise.
Here ξ12 is the closest distance of approach for the two
molecules at fixed relative orientation. One can readily
see from eq. (1) that the packing entropy is of the or-
der ρ2kBT . At the same time the mean-field contribution
from the intermolecular attraction is of the order of ρ2V0,
where V0 is the value of the total interaction potential at
average intermolecular separation. The energy V0, how-
ever, is typically 5–10 times larger than kBTNI [18], where
TNI is the Isotropic-Nematic transition temperature, and
thus the predominant contribution to the free energy is de-
termined by the intermolecular attraction modulated by
anisotropic molecular shape [19].

Bent-core molecules which exhibit the ferroelectric
smectic phase possess significant transverse dipoles, and
thus a contribution from the dipole-dipole interaction to
the stability of the polar phase cannot be neglected. In-
deed, it has been shown by atomistic simulations that po-
lar clusters in the bent-core nematic phase disappear when
electrostatic interaction is “switched off” [20]. One may
conclude that in real ferroelectric bent-core smectics both
dipole-dipole interactions and the effects of polar shape
should be taken into consideration. Recently steric polar
interactions of V-shaped molecules have been considered
in detail by Bisi et al. [21,22]. At the same time, in the ex-
isting molecular-statistical theory [3–6] the dipole-dipole
interaction is considered to be responsible for ferroelec-
tric ordering in isotropic fluids composed of strongly polar
but weakly anisometric molecules. However, as discussed
in the Introduction, there is no direct experimental evi-
dence if favor of ferroelectricity in isotropic fluids. There
are several reasons for that which are discussed in [4].
Firstly, the fluid ferroelectric phase is stable only if the
molecular dipole is sufficiently large. On the other hand,
in such systems there is a strong tendency to form polar
chains which appears to be a more effective way to reduce
the total free energy (see, for example, [23]). The polar
interaction between such chains, however, appears to be
relatively weak and they do not order ferroelectrically.

Secondly, the contribution of the long-range dipole-
dipole interaction to the free energy of a sample gener-
ally depends on the boundary conditions and therefore
the conditions, which determine the transition temper-
ature into the ferroelectric phase, are not universal [4].
They may depend, for example, on the sample shape and
on the dielectric susceptibility of the surrounding medium.
In this section we show that this problem does not exist
in quasi–two-dimensional systems, i.e. in the 2D confined
geometry. Thus ferroelectricity is more likely to be found
in layered systems like smectic liquid crystals.

In the molecular-field approximation the average
dipole-dipole interaction energy in the polar fluid com-
posed of spherical molecules with permanent dipoles can
be expressed as

〈Udd〉 =
1
2
ρ2

∫
θ(rij − D)φdd(ai,aj)f(ai)f(aj)

×r2
ijdrijd2uijdaidaj , (2)

where φdd(ai,aj) is the electrostatic dipole-dipole interac-
tion potential:

φdd(ai,aj) =
1
r3
ij

(�μi · �μj − 3(�μi · �uij)(�μj · �uij)) (3)

and where �μi is the permanent dipole of the molecule i,
ai is the unit vector along the molecular dipole, D is the
molecular diameter, uij = rij/rij is the unit intermolecu-
lar vector and f(ai) is one-particle orientational distribu-
tion function. One can readily see that the integral over
uij in eq. (2) vanishes because

∫
uαuβd2u = 4πδαβ/3. At

the same time the integral over rij diverges as ln L, where
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L is the system size. Thus the actual value of the dipole-
dipole contribution to the total free energy depends on the
shape of the sample and on boundary conditions [4].

The explicit dependence of the integral on the electro-
static boundary conditions can be seen in the following
way. Let us express the integral in eq. (2) as a sum of the
following two parts:

〈Udd〉 =
1
2
ρ2

∫
V0

[
θ(rij − D)

−1
]
φdd(ai,aj)f(ai)f(aj)r2

ijdrijd2uijdaidaj

+
1
2
ρ2

∫
φdd(ai,aj)f(ai)f(aj)r2

ijdrijd2uijdaidaj ,

(4)

where the first integral in taken over the spherical volume
V0 of the radius D with the centre at the origin and the
second integral is taken over the whole sample. The ad-
vantage of this representation is related to the fact that
the first integral can be taken analytically despite a singu-
larity at the origin. Indeed, taking into account that the
dipole-dipole interaction potential can be expressed as a
full gradient

1
r3
ij

(�μi · �μj − 3(�μi · �uij)(�μj · �uij)) = μi,αμj,β∇α∇β
1
rij

,

(5)
the first integral in eq. (4) can be transformed into the sur-
face integral (employing the Gauss theorem) which does
not contain any singularity and which can be evaluated
analytically [24]:

1
2
ρ2

∫
V0

[θ(rij−D)−1] φdd(ai,aj)daidajdV =
4π

3
〈�μ 〉2,

(6)
where 〈�μ 〉 =

∫
�μf(a)da is the average molecular dipole in

the polar phase.
It can readily be shown now that the second integral

in eq. (4) is the total electrostatic energy of the whole
sample [4]:

1
2
ρ2

∫
φdd(ai,aj)daidajdV = −1

2

∫
P(r) · E(r)d3r, (7)

where P = ρ〈�μ 〉 is the macroscopic polarization, and
where we have used the well-known relationship between
the electric field E and the polarization P which follows
from Maxwell equations:

Eα(r) = −
∫

Tαβ(r − r′)Pβ(r′)d3r′, (8)

where Tαβ(r) = r−3(δα,β − 3uαuβ), and where u = r/r.
For an ellipsoidal sample E = −4πD(k, ε)P , where k is

the parameter of the ellipsoid (k = 1/3 for a sphere) and ε
is the dielectric constant of the surrounding medium. As a
result the contribution of the dipole-dipole interaction to
the total free energy of the ellipsoidal sample is expressed
as [4]

ΔF = 〈Udd〉 = 2π

[
2D(k, ε) − 2

3

]
P 2. (9)

Now there are two important cases. For a spherical sample
in a conducting medium D(1/3,∞) = 0 and E = 0. Thus
the dipole-dipole contribution reads

ΔF = 〈Udd〉 = −4π

3
P 2. (10)

One concludes that in this case the dipole-dipole interac-
tion promotes the ferroelectric ordering. In contrast, for
a spherical sample in vacuum D(1/3, 1) = 1/3 and there-
fore the dipole-dipole contribution vanishes because the
two terms cancel each other. Thus in this case the dipole-
dipole interaction does not contribute to the total free
energy in the first approximation.

In real polar fluids a contribution of the dipole-dipole
interaction to the total free energy may vary significantly,
as it might depend on the sample shape, on boundary
conditions and on the concentration of ions. These depen-
dencies are related to the long-range nature of the dipole-
dipole interaction in three-dimensional systems, and this
is one of the main reasons why proper ferroelectricity can
hardly be observed in isotropic fluids or in nematic liquid
crystals [4]. On the other hand, in the restricted 2D geom-
etry the integral of the dipole-dipole interaction does not
diverge at infinity, and the corresponding contribution to
the free energy is given by a regular expression which is
much more robust. Indeed, assuming that the molecular
centres are restricted to a plane in 3D (i.e. the molecules
belong to a thin layer), the average dipole-dipole inter-
action potential in a system of spherical molecules with
homogeneous polarization can be expressed as:

〈U2D
dd 〉 =

1
2
sρ2

2D

∫
θ(rij − D)φdd(ai,aj)f(ai)

×f(aj)rijdrijdφijdaidaj

= −1
2

sρ2
2D

D
〈�μ 〉2, (11)

where s is the total surface area of the layer and ρ2D is
the surface number density.

Thus the dipole-dipole contribution to the free energy
of the 2D layer promotes ferroelectricity and does not de-
pend on the sample shape or on boundary conditions. This
explains qualitatively why proper ferroelectricity has been
observed in the smectic A phase composed of strongly po-
lar bent-core molecules. The corresponding expression will
be used in the following section.

3 Molecular model of bent-core molecules

In this paper we use the effective interaction potential for
the model bent-core particles which is based on the inter-
actions between three polarizability centers and the trans-
verse electric dipole located at the apex of molecule, fig. 1.
The polarizability centers are assumed to be isotropic for
simplicity, and we assume that the interaction between
centers is described by the Lennard-Jones potential, which
includes long-range attraction and short-range repulsion.
This kind of soft interaction provides the natural distance,
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Fig. 1. (Color online) Model bent-core molecules, where the
angle δ is the deviation from the uniaxial order of Lennard-
Jones centers, and two neighboring centers are located at the
distance l. Furthermore each molecule possesses the electric
dipole placed at its apex along the C2v symmetry axis, which
coincides with the short molecular axis b̂. The long principal
axis, ĉ, is shown for molecule j, and the third principal axis is
determined by â = b̂ × ĉ.

i.e. σ, for the cutoff, and this is the reason why we have
used them instead of the previously investigated disper-
sion interactions between arms [25]. Now the intermolecu-
lar interaction potential for bent-core molecules with the
opening angle π − 2δ is expressed as a sum of Lennard-
Jones contributions and the electrostatic dipole-dipole po-
tential:

U(i, j) =
∑

α,β=−1,0,1

VLJ(riα,jβ
) + φdd(�rijD

, �μi, �μj), (12)

where the Lennard-Jones potential is expressed in stan-
dard form:

VLJ(riα,jβ
) = 4ε

[(
σ

riα,jβ

)12

−
(

σ

riα,jβ

)6
]

, (13)

while the dipole-dipole potential is given by eq. (3), with
uij = �rijD

/rijD
. Here the vectors between molecular po-

larizability centers are expressed as

�riα,jβ
= �rij + l

[
cos δ

(
{δ1,β − δ−1,β}ĉj − {δ1,α

−δ−1,α}ĉi

)
+ sin δ

(
δ0,αb̂i − δ0,βb̂j

) ]
, (14)

where indices α, β = −1, 0, 1 for lower, central and upper
Lennard-Jones centers, respectively, and l is the distance
between two subsequent centers in a given molecule. The
vector between the transverse dipoles of the molecules i
and j is equal to

�rijD
≡ �ri0,j0 = �rij + l sin δ

(
b̂i − b̂j

)
. (15)

The interaction potential for any two molecules,
eq. (12), can now be expanded in powers of l/rij keeping
the first nontrivial terms. In the mean-field approximation

the pair interaction potential can be integrated over all
intermolecular vectors �rij within one smectic layer [2,26]
taking into account the steric cutoff at �rij = σ. To facili-
tate numerical calculations we also use the approximation
of perfect orientational order of long molecular axes i.e.
∀i,j(ĉi · ĉj) ∼= 1 and (ĉi · b̂j) = (b̂i · ĉj) ∼= 0. As a result
one obtains a simple pair potential, which is expressed as
a sum of the polar and nonpolar contributions:

V (i, j) =
[
−3Jσ2λ2 − μ2

2σ

] (
b̂i · b̂j

)

+
213
2

λ4Jσ2
(
b̂i · b̂j

)2

, (16)

where J is proportional to the −ε, μ is the value of electric
dipole, σ is the molecular diameter in the Lennard-Jones
potential, and λ = l

σ tan δ. In the framework of the molec-
ular field theory of smectic liquid crystals the one-particle
distribution function is determined by the following self-
consistent equation (see for instance [1,2,26,27]):

f1(b̂) =
1
Z

exp

[
−UMF (b̂)

kBT

]
, (17)

where Z is the one-particle partition function:

Z =
∫

exp

[
−UMF (b̂)

kBT

]
db̂, (18)

and where the mean-field potential UMF is determined
self-consistently by the following expression:

UMF (b̂) = ρ

∫
f1(b̂2)V (b̂, b̂2)db̂2, (19)

where ρ is the number density of molecules and V (b̂, b̂2) is
the effective orientational pair interaction potential given
by eq. (16). Substituting eq. (16) into eq. (19) one ob-
tains the following explicit expression for the mean-field
potential:

UMF (i) = ρ

[
−3Jσ2λ2 − μ2

2σ

]
〈cos(φ)〉 cos(φ)

+ρ
213
4

λ4Jσ2 [1 + 〈cos(2φ)〉 cos(2φ)] , (20)

where the angle φ is determined by the equation cos(φ) ≡
b̂ · m̂, and where m̂ is the secondary director in the bi-
axial phases. One notes that the mean-field potential de-
pends on the two orientational order parameters 〈cos(2φ)〉
and 〈cos(φ)〉 which specify the nonpolar biaxial and polar
order of short molecular axes, respectively. In the non-
polar biaxial phase only the order parameter 〈cos(2φ)〉 is
nonzero, while in the polar biaxial phase both order pa-
rameters do not vanish. After dropping the constant term
in eq. (20), the dimensionless mean-field potential can be
expressed as

VMF (i) ≡ UMF (i)
ρσ2|J | =

[
3λ2 − M

2

]
〈cos(φ)〉 cos(φ)

−213
4

λ4〈cos(2φ)〉 cos(2φ), (21)
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Fig. 2. (Color online) Phase diagram for λ = 1
2
. Dashed verti-

cal lines represent the values of M for which order parameters
profiles are presented.

with M = μ2

σ3|J| . Finally the mean-field free energy of the
system is given by the following expression:

flayer ≡ Flayer

ρσ2|J | =
1
2

([
M

2
− 3λ2

]
〈cos(φ)〉2

+
213
4

λ4〈cos(2φ)〉2
)
− t ln(Z), (22)

where t = kBT
σ2|J| is the reduced temperature in the system.

One notes that in the limit of vanishing dipole moment
this expression is reduced to the mean-field free energy of
the nonpolar biaxial phases for system composed of bent-
core molecules.

It should be noted that in this model we have con-
sidered only the dispersion and electrostatic dipolar in-
teractions between central parts of bent-core molecules
assuming that the polar part of this potential is respon-
sible for the ordering of short molecular axes. Real bent-
core molecules possess a much larger geometric anisotropy
than that specified by the parameter l/σ mainly due to the
presence of long flexible chains. This large anisotropy sta-
bilizes high orientational and translational order typical
for smectic bent-core phases and determines the transi-
tion temperature into the smectic A phase.

4 Results

The values of order parameters as functions of temper-
ature have been obtained by numerical minimization of
the mean-field free energy, eq. (22), for various values of
the coupling constants in eq. (21). Then the results have
been summarized in the form of the reduced temperature
(t) and the reduced dipolar energy (M) phase diagrams
for two fixed values of λ. In order to provide credible re-
sults we have assumed that both contributions to the pair
potential are comparable, and thus we present phase dia-
grams for λ = 1

2 in fig. 2, and λ = 1
3 in fig. 3. Both dia-

grams are qualitatively similar and contain the line of the
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Fig. 3. (Color online) Phase diagram for λ = 1
3
. Dashed verti-

cal lines represent the values of M for which order parameters
profiles are presented.
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Fig. 4. (Color online) Temperature variation of the order pa-
rameters for λ = 1

2
and for: M = 5.75 (a), M = 1.5 (b).

first-order transitions from the uniaxial smectic A phase
to the ferroelectric phase (denoted as SmAF ), and the line
of second-order phase transition from the uniaxial smec-
tic A phase to the biaxial nonpolar phase SmAB . Transi-
tion from the nonpolar SmAB phase to the polar SmAF

phase can be either of the first or second order depend-
ing on the dipolar strength constant M . Representative
order parameter profiles are shown in fig. 4 and fig. 5.
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Fig. 5. (Color online) Temperature variation of the order pa-
rameters for λ = 1

3
and for: M = 1.05 (a), M = 2.05 (b).

In both (a) panels of fig. 4 and fig. 5 the system under-
goes the full sequence of phase transitions starting from
the uniaxial smectic A phase thorough nonpolar biaxial
smectic to the ferroelectric SmAF phase.

Furthermore, one observes that for constant value of
λ, when the reduced dipolar energy contribution described
by M is decreasing, the temperature range of polar SmAF

phase is shrinking, and finally is reduced to a point at a
certain value of M . This limiting value of M can formally
be obtained from the condition that the average internal
energy of the system:

1
2

([
M

2
− 3λ2

]
〈cos(φ)〉2 +

213
4

λ4〈cos(2φ)〉2
)

(23)

is positively defined. This constraint in formula (23) im-
plies that [M

2 − 3λ2] ≥ 0, which for fixed λ yields the
following lover limit for the dipolar coupling constant:
M ≥ 6λ2. In the case of equality only the nonpolar SmAB

phase is stable at nonzero temperatures, and the tempera-
ture variation of the order parameter is shown in fig. 4(b).
The order parameter profiles for the opposite situation are
presented in fig. 5(b). In this case the system undergoes
the direct uniaxial smectic A to the polar SmAF phase
transition, and there is no nonpolar SmAB phase. Further
increase of the dipole strength M results in a weakening
of the first-order phase transition.

One can readily see that the transition into the ferro-
electric phase occurs at reduced temperatures t ∼ 1 when
the dimensionless parameter M is in the range from 2 to
10. This means that Lennard-Jones coupling constant J
must be of the order of kBT , and the dipole-dipole in-
teraction potential (proportional to μ2/σ3) at a contact
distance should be of the order of (2 − 10)kBT which is
consistent with the realistic values of the molecular dipole
at the contact distance σ.

5 Discussion

It has been shown in this paper that the electrostatic
dipole-dipole interaction may promote ferroelectric order-
ing in systems with two-dimensional restricted geometry
like smectic liquid crystals with high positional order. In
3D polar fluids without any translational order the long
nature of the dipole-dipole interaction results in a depen-
dence of the dipole-dipole contribution to the free energy
on the sample shape and on the boundary conditions. In
contrast, in quasi–two-dimensional systems the contribu-
tion from the dipole-dipole interaction to the total free en-
ergy is regular and does not depend either on the shape of
the sample or on the dielectric constant of the surrounding
medium. This enables one to explain why ferroelectric or-
dering is more likely to be observed in layered systems like
bent-core smectic liquid crystals and not in conventional
polar fluids or nematic liquid crystals composed of polar
molecules. This conclusion has been justified in sect. 2
assuming that the centers of molecules are confined to a
plane. However, one expects that similar arguments would
apply if the molecular centers are confined to a finite layer.
Thus the present theory may also be generalized taking
into account some translational fluctuations.

One notes that the ferroelectric ordering in orthog-
onal bent-core smectic phases, which has recently been
observed experimentally, is further stabilized by the high
orientational order of long molecular axes (see a recent pa-
per [14] where high values of the nematic order parameter
have been measured). In the case of high nematic order
of long molecular axes the transverse dipoles of bent-core
molecules are restricted to the plane of the smectic layer.
This reduces the orientational entropy which opposes the
polar order.

In the case of bent-core molecules polar intermolecular
interactions are determined both by the permanent molec-
ular dipoles and by the intermolecular attraction modu-
lated by polar molecular shape. It has been shown that the
latter interaction promotes the antiparallel orientation of
the steric dipoles of the neighboring bent-core molecules
which stabilizes the nonpolar biaxial Smectic A phase. As
a result the ferroelectric ordering may appear due to a
subtle balance between the dipole-dipole and steric in-
termolecular interactions, and the system generally may
exhibit both phases at different temperatures.

Two phase diagrams have been presented which illus-
trate the dependence of the transition temperatures be-
tween different phases on the reduced molecular dipole
for different values of the molecular bent angle. In general
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the increase of the molecular dipole leads to a stabilization
of the ferroelectric phase while the region of stability of
the nonpolar biaxial phase is increasing with the increas-
ing bent angle, at least when the angle is not too large.
Transition from the uniaxial smectic A phase to the fer-
roelectric SmAF is of the first order while the transition
from the uniaxial smectic A phase to the biaxial nonpolar
SmAB is of the second order. Transition from the nonpo-
lar SmAB phase to the polar SmAF phase can be either
of the first or of the second order depending on the dipo-
lar strength constant M . Representative order parameter
profiles in both phases have also been calculated numeri-
cally.

One notes that the phase diagrams presented in this
paper are qualitatively similar to the diagrams obtained
using the theory of orientational phase transitions in
molecular crystals with polar and quadrupolar interac-
tions [28]. This similarity is related to the mean-field char-
acter of both theories (including the two-particle cluster
approximation also used in [28]) which results in a similar
mathematical form of the free energy. At the same time
the molecular origin of the ferroelectric ordering in both
cases is significantly different. The theory of phase transi-
tions in molecular crystals [28] is based on a simple model
short-range polar interaction potential which is not di-
rectly related to the dipole-dipole interaction. In contrast,
the present theory employs the long-range dipole-dipole
interaction potential which makes a regular contribution
to the free energy (which is independent of the boundary
conditions) only in strongly layered phases, i.e. in quasi–
two-dimensional systems.

It should be noted that the theory presented in this
paper is based on the assumption that the director is
perpendicular to the smectic plane. Thus only orthogo-
nal smectic phases have been taken into consideration. It
is well known, however, that many bent-core liquid crys-
tals exhibit also a sequence of tilted ferro- and ferri-electric
phases. These tilted phase can be described using the same
general method which has been used in the molecular the-
ory of de Vries like smectics C [26,29,30]. The correspond-
ing theory will be presented in our future publication.
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