Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Numerical modelling and thermal simulation of PCM-gypsum composites with ESP-r

Heim, D. and Clarke, J.A. (2004) Numerical modelling and thermal simulation of PCM-gypsum composites with ESP-r. Energy and Buildings, 36 (8). pp. 795-805. ISSN 0378-7788

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The aim of the present work is to refine the ESP-r system by incorporating phase change materials (PCMs) modelling. The behaviour of PCMs is modelled using ESP-r's special materials facility. The effect of phase transition is added to the energy balance equation as a latent heat generation term according to the so-called effective heat capacity method. Numerical simulations were conducted for a multi-zone, highly glazed and naturally ventilated passive solar building. PCM-impregnated gypsum plasterboard was used as an internal room lining. The air, surface and resultant temperatures were compared with the no-PCM case and the diurnal latent heat storage effect was analysed. While this effect did not cause a considerable reduction in the diurnal temperature fluctuation, the PCMs did effectively store solar energy in the transitions periods. Additionally, the energy requirement at the beginning and end of the heating season was estimated and compared with ordinary gypsum wallboard. Within this comparison, the PCM composite solidification temperature was 22 °C (i.e. 2 K higher than the heating set-point for the room). The results show that solar energy stored in the PCM-gypsum panels can reduce the heating energy demand by up to 90% at times during the heating season.

Item type: Article
ID code: 5061
Keywords: numerical modelling, building simulation, phase change materials, PCM-gypsum composite, latent heat storage system, Mechanical engineering and machinery, Building and Construction, Civil and Structural Engineering, Mechanical Engineering, Electrical and Electronic Engineering
Subjects: Technology > Mechanical engineering and machinery
Department: Faculty of Engineering > Mechanical and Aerospace Engineering
Faculty of Humanities and Social Sciences (HaSS) > School of Psychological Science and Health > Psychology
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 05 Jan 2008
    Last modified: 04 Sep 2014 16:14
    URI: http://strathprints.strath.ac.uk/id/eprint/5061

    Actions (login required)

    View Item