Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

3D Dynamic analysis of soil-tool interation using the finite element method

Abo-Elnor, Mootaz and Hamilton, R. and Boyle, James (2003) 3D Dynamic analysis of soil-tool interation using the finite element method. Journal of Terramechanics, 40 (1). pp. 51-62. ISSN 0022-4898

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Previous experimental and finite element studies have shown the influence of both soil initial conditions and blade operating conditions on cutting forces. However, most of these finite element analyses (FEA) are limited to small blade displacements to reduce element distortion which can cause solution convergence problems. In this study a dynamic three-dimensional FEA of soil-tool interaction was carried out based on predefined failure surfaces to investigate the effect of cutting speed and angle on cutting forces over large blade displacements. Sandy soil was considered in this study and modeled using the hypoplastic constitutive model implemented in the commercial FEA package, ABAQUS. Results reveal the validity of the concept of predefined failure surfaces in simulating soil-tool interaction and the significant effect of cutting acceleration on cutting forces.