Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Prediction of impact erosion in valve geometries

Wallace, M.S. and Dempster, W.M. and Scanlon, T.J. and Peters, J. and McCulloch, S. (2004) Prediction of impact erosion in valve geometries. Wear, 256 (9-10). pp. 927-936. ISSN 0043-1648

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In this paper, the capability of computational fluid dynamics techniques is investigated to predict the rate of solid particle erosion in industrially relevant geometries. An Eulerian-Lagrangian model of the flow is used, in combination with empirically developed equations for the mass removal, to examine erosion in valve components for aqueous slurry flows. Two types of geometries were used: (i) a relative simple geometry with basic geometrical features similar to real valves and (ii) a geometrically complex valve (a choke valve). Predictions of flow coefficients and mass removal rates were directly compared with measurements from a parallel experimental programme. While flow characteristics and erosion locations were identified satisfactorily, erosion rates were seriously underestimated.