Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Magnesium aryloxides: synthesis, structure, solution behavior and magnesiate ion formation

Henderson, K.W. and Honeyman, G.W. and Kennedy, A.R. and Mulvey, R.E. and Parkinson, J.A. and Sherrington, D.C. (2003) Magnesium aryloxides: synthesis, structure, solution behavior and magnesiate ion formation. Dalton Transactions, 2003 (7). pp. 1365-1372. ISSN 1477-9234

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The heteroleptic magnesium complexes [{Ar'OMgBu}(2)] 1 and [{Ar'OMgN(i-Pr)(2)}(2)] 2, where OAr' = 2,6-di-tertbutylphenoxy, have been prepared and found to be dimeric in the solid state, with tri-coordinate metal centers. Complex 1 utilizes the aryloxide anions as bridging groups whereas the amido anions connect the metals in 2. Addition of THF or TMEDA to hydrocarbon solutions containing 2 results in disproportionation and the exclusive precipitation of the homoleptic, solvated, complexes [Mg(OAr')(2).2THF] 3 or [Mg(OAr')(2).TMEDA] 4. Both 3 and 4 are monomeric in the solid state with tetra-coordinate magnesium centers. Solution NMR spectroscopic studies of 1 and 2 reveal that disproportionation to the homoleptic complexes is promoted in THF-d(8) but that the main component still appears to be the heteroleptic species. Dissolution of the unsolvated dimeric complex [Mg(OAr')(2)] 5 in THF-d(8) results in partial formation of the magnesiate complex [Ar'OMg](+)[(Ar'O)(3)Mg](-)10, along with the monomer 3. In contrast, no magnesiate is formed on dissolution of 3 in THF-d(8), indicating that magnesiate formation most likely proceeds via unsymmetrical cleavage of the dimer. Ab initio calculations (HF/6-31G*) have been used to investigate the possible structures of the magnesiate species.