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The Knudsen layer is an important rarefaction phenomenon in gas flows in and around
microdevices. Its accurate and efficient modeling is of critical importance in the design of such
systems and in predicting their performance. In this paper we investigate the potential that
higher-order continuum equations may have to model the Knudsen layer, and compare their
predictions to high-accuracy DSMC �direct simulation Monte Carlo� data, as well as a standard
result from kinetic theory. We find that, for a benchmark case, the most common higher-order
continuum equation sets �Grad’s 13 moment, Burnett, and super-Burnett equations� cannot capture
the Knudsen layer. Variants of these equation families have, however, been proposed and some of
them can qualitatively describe the Knudsen layer structure. To make quantitative comparisons, we
obtain additional boundary conditions �needed for unique solutions to the higher-order equations�
from kinetic theory. However, we find the quantitative agreement with kinetic theory and DSMC
data is only slight. © 2005 American Institute of Physics. �DOI: 10.1063/1.1897005�

I. INTRODUCTION

In the region of a gas flow very close to a solid surface,
conventional fluid dynamic models are not appropriate. This
is because there are insufficient molecular-molecular and
molecular-surface collisions over this very small scale to jus-
tify the assumption of quasi thermodynamic-equilibrium—an
assumption upon which the Navier–Stokes equations, and
the associated no-slip boundary condition, depend �see Ref.
1 for a good discussion of this subject�. Two defining char-
acteristics of this near-surface region of a gas flow are the
following: first, there is a finite velocity of the gas at the
surface �velocity slip�, and second, there exists a non-
Newtonian stress/strain-rate relationship that extends a few
molecular mean free paths into the gas �known as the Knud-
sen layer or kinetic boundary layer�. Although the Knudsen
layer has thermal aspects, the scope of this paper is restricted
to incompressible, slightly rarefied, isothermal gas flows,
where thermal phenomena are of lesser importance. For
brevity, this general class of flow will be referred to here as
“low-speed gas microflows.”

Ordinarily, the Knudsen layer and velocity slip are neg-
ligible in comparison to macroscopic features of the flow.
However, in rarefied conditions these effects become an im-
portant part of the overall flow field. Broadly, the degree of
gas rarefaction can be expressed by the dimensionless Knud-
sen number,

Kn =
�

L
, �1�

where � is the molecular mean free path and L is a length
scale that is characteristic of some global feature of the flow.
For planar Poiseuille flow �pressure-driven flow in a chan-
nel�, with a Knudsen number of Kn=0.05 �based on a length
scale equal to half the channel height�, the mass flow rate is
around 15% greater than it would be in nonrarefied condi-
tions �see the calculation in Appendix A�. Approximately
70% of this mass flow rate increase is due to the velocity slip
at the wall, and 30% due to the non-Newtonian structure of
the Knudsen layer. Contrary to what is often assumed, there-
fore, the Knudsen layer has a significant impact even at rela-
tively low Knudsen numbers, and so is an essential consid-
eration when modeling low-speed gas microflows.

While the Knudsen layer has been investigated exten-
sively using kinetic theory,2–4 the ability to capture it within
a continuum-fluid formulation suitable for current computa-
tional fluid dynamics �CFD� techniques would have distinct
advantages in terms of computational efficiency. Although
slip can be incorporated using velocity boundary conditions,
the Navier–Stokes constitutive relations cannot model the
nonlinear stress/strain-rate behavior within the Knudsen
layer. A remedy to this shortcoming of conventional CFD
may be the use of higher-order constitutive relations. In this
paper we evaluate and compare the ability of different sets of
available constitutive relations to improve the continuum-
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fluid predictions of low-speed gas microflows; specifically,
their ability to model the Knudsen layer.

II. DISCRETE-MOLECULAR APPROACHES

A gas flow generated by a uniformly applied shear stress
and bounded by one parallel surface is a configuration
known as Kramer’s problem �see Fig. 1�. Kramer’s problem
allows us to investigate the one-dimensional isothermal
Knudsen layer in isolation. It is, therefore, the most funda-
mental benchmark case for testing methods of modeling the
Knudsen layer. And so, one might argue, if a continuum
model cannot accurately solve Kramer’s problem, it will
probably not be a good model for low-speed gas microflows
in general.

In this section, and for later comparison with continuum-
fluid models, we describe solutions to Kramer’s problem us-
ing discrete-molecular approaches. The data denoted by
circles in Fig. 2 have been obtained using the direct simula-
tion Monte Carlo �DSMC� method; a statistical molecular
dynamics approach that tracks the motion and collisions of a
large number of representative particles. The DSMC code we
have used is a modified version of DSMC1 published by
Bird.5 In this case, our solution to Kramer’s problem is a
simulation of low-speed �Mach number =0.05� Couette flow
of argon gas �Kramer’s problem is the limiting case of Cou-
ette flow as Kn→0�. In our Couette flow simulations the
height of the channel is roughly 8� �for Kn=0.125�, which is
amply sufficient to accommodate the Knudsen layers on both
walls without interference with each other. More than 10
�109 molecular moves have been performed computation-
ally, and the statistical variation in our calculated stress field
is three orders of magnitude less than the actual value. The
calculation was performed on 1000 processors of ASCI Red,
a 3 TFLOP capable massively parallel computer; full simu-
lation details are given in Table I.

The solid line in Fig. 2 is a solution of the linearized
Boltzmann equation obtained using the Bhatnagar-Gross–
Krook �BGK� approximation;3 for the low-speeds consid-

ered, this approximate method is a fair one. It can be seen
that the discrete-molecular solutions and kinetic theory are in
good agreement with each other, and so, in the absence of
reliable experimental data, can collectively be considered as
a suitable benchmark solution for comparison with our
continuum-fluid solutions.

III. NAVIER–STOKES SOLUTIONS

The dash-dot line in Fig. 2 indicates the prediction of the
Navier–Stokes equations with the conventional no-slip
boundary condition. The dashed line is the prediction ob-
tained when using a velocity boundary condition taken from
the kinetic theory solution. The viscosity and shear stress are
constant throughout the Knudsen layer: the values of these,
which are used in all of the continuum calculations in this
paper, have been obtained directly from our DSMC calcula-
tion.

Commonly, “fictitious” �or “macro”� slip boundary con-
ditions are used in conjunction with the Navier–Stokes solu-
tion so that good agreement can, at least, be obtained outside
of the Knudsen layer �the dotted line in Fig. 2�. However, the
disadvantage of this approach is the need for some part of the
domain near to the wall to be fictitious. At higher Knudsen
numbers �although still significantly less than 1� the propor-
tion of the domain that is therefore represented fictitiously is
substantial. Knudsen-layer corrections based on numerical
calculations in kinetic theory can remove this fictitious
element,4 but this adds substantial complication to an other-
wise simple continuum calculation. What would be more de-
sirable, from engineering and computational viewpoints, is to
model the physics of the Knudsen layer using a single
continuum-fluid formulation with no additional input. We
will now examine whether higher-order continuum-fluid
equations may be able to fulfill this role.

FIG. 2. Velocity profiles in Kramer’s problem �planar wall at x=0�. DSMC
results for argon �o�; kinetic theory �—�; Navier–Stokes with fictitious slip
�···�; Navier–Stokes with actual slip �– –�; Navier–Stokes with no slip �– · –�.
Values extracted from DSMC data: applied shear stress �=0.5 N m−2; dy-
namic viscosity �=20.5�10−6 N m−2 s−1; mean free path �=118�10−6 m.
For the equivalent DSMC calculation of Couette flow, the second wall is
situated at x=1 mm.

FIG. 1. Schematic of Kramer’s problem: a gas in a half space, bounded by
a planar wall, subject to a uniform and constant shear stress �. The Navier–
Stokes solution with no-slip boundary condition �– –� departs significantly
from the actual velocity profile �—�, and the velocity of the gas at the wall
��slip� is different to the velocity of the wall itself ��wall�.
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IV. HIGHER-ORDER CONTINUUM-FLUID EQUATIONS

Numerous higher-order continuum-fluid equation sets
have been proposed, by various researchers, for flows that
depart from quasi thermodynamic-equilibrium. These in-
clude Burnett,6 super-Burnett,7 Grad’s 13 moment,8 Eu’s
generalized hydrodynamics �GH�,9 Zhong’s augmented
Burnett,10 Lumpkin’s reduced Burnett,11 BGK-Burnett,12

regularized Burnett,13 R13,14 and Woods15 equations. This is
not an exhaustive list, but includes the most commonly used
and cited. �Unfortunately, lack of space precludes a detailed
description and full evaluation of their relative merits here.�

There are three basic reasons why there are so many
competing sets of different higher-order equations. First,
constitutive relations of higher-order than the Navier–Stokes
equations have demonstrated potential in modeling rarefied
hypersonic flows, specifically, in the prediction of one-
dimensional shock wave thickness. This success has gener-
ated significant research interest. Second, these higher-order
equations are all plagued by numerical and physical instabili-
ties and, in many cases, produce nonphysical flow predic-
tions. This has prompted the development of a number of
variant forms of the two main equation families �i.e., Bur-
nett’s and Grad’s� in an attempt to eliminate these flaws.
Third, no single equation set has demonstrated universal su-
periority in the prediction of rarefied gas flows—it is an ac-
tive research question as to which is the “best” set of equa-
tions.

All of the higher-order continuum equations we consider
in this paper originate from, or are based on, either the
Chapman–Enskog series solution technique �which generates
the Burnett equations� or Grad’s 13 moment approach. Sur-
prisingly, after performing the linearization �see Appendix B�
and one dimensionalization appropriate for Kramer’s prob-
lem, the Burnett and Grad equations both reduce to the
Navier–Stokes equations—the dashed line in Fig. 2: i.e., nei-
ther can predict a Knudsen layer. This nonresult is partially
supported by Kogan,2 who demonstrated that the Chapman–
Enskog series �which has similarities to Grad’s approach�
does not provide a solution to the Boltzmann equation in the
Knudsen layer. Eu’s generalized hydrodynamics, Woods’
frame-indifferent equations and Lumpkin’s reduced Burnett

are other higher-order equation sets that reduce to the
Navier–Stokes equations for Kramer’s problem.

Examining some of the other proposed sets of equations:
for the linearized one-dimensional form of Zhong’s aug-
mented Burnett and BGK-Burnett equations, the expression
for the shear stress � �which is constant in Kramer’s prob-
lem� is of the general form

� = − �
d�

dx
+ A

�3

p�

d3�

dx3 , �2�

where � is the velocity parallel to the surface, x is in a di-
rection perpendicular to the surface, � is the gas viscosity, p
is the pressure, and � is the density. For the BGK-Burnett
equations, A=1, and for Zhong’s augmented Burnett equa-
tions, A=1/6. For the Burnett equations, A=0. Notice that
the first term in Eq. �2� is equivalent to the Navier–Stokes
shear stress; one of the desirable features of higher-order
continuum equations is that they reduce to the Navier–Stokes
equations in any nonrarefied regions of the gas flow.

For the linearized one-dimensional super-Burnett equa-
tions the shear stress expression has a slightly different form
�the sign of the higher-order term is inverted�,

� = − �
d�

dx
−

2

3

�3

p�

d3�

dx3 . �3�

As will be demonstrated later this has a significant impact on
the solution.

In the regularized Burnett and R13 equations, the shear
stress is not expressed explicitly, as above. Instead, the flow
velocity is calculated by solving the following equations si-
multaneously:

� = − �
d�

dx
−

2

5

�

p

dq

dx
, �4�

and

q = B
�2

p�

d2q

dx2 , �5�

where q is the heat flux parallel to the surface and B=9/5 for
the R13 equations. For Grad’s and Eu’s equations, B=0. The

TABLE I. DSMC parameters used in our simulation of low-speed Couette flow of argon.

Simulation parameter Value

Wall separation 1 mm

Difference in wall velocities 30.8 m/s

Wall surface temperature 273.2 K

Domain size 0.5 mm �half channel�
Grid points 50

Number of particles 1.5�106

Calculated particle moves 13.65�109

Pressure 52 Pa

Viscosity 2.117�10−5 Pa s

Temperature exponent of viscosity coefficient ��� 0.81

Exponent in variable soft sphere �VSS� molecular model ��� 1.4

Properties of molecular reflection at wall Pure Maxwellian diffuse reflection

100609-3 Usefulness of higher-order constitutive relations Phys. Fluids 17, 100609 �2005�



coefficients in the regularized Burnett equations are not
known a priori, and here we use a value suggested in Ref.
14: B=27/5. This value is obtained by comparing the regu-
larized Burnett with the R13 equations for the one-
dimensional case where flow velocity is in the same direction
as the flow variation �such as in a one-dimensional shock
wave�. Interestingly, both the R13 and regularized Burnett
equations can predict a heat flux in the absence of a tempera-
ture gradient.

A. Boundary conditions

In order to test the predictions of the higher-order con-
tinuum equations �2�–�5� we need to provide new boundary
conditions to obtain a unique solution. In most flows of in-
terest there is no indication as to what these additional
boundary conditions might be. For the purposes of testing
the equation sets on this benchmark Kramer’s problem, how-
ever, we can use boundary conditions extracted from the lin-
earized solution of the Boltzmann equation �the solid line in
Fig. 2�.

The first boundary condition we obtain �which is re-
quired even for the Navier–Stokes solution� is the velocity
slip due to diffuse molecular reflection at the wall,

�x=0 = − �
�

�
� 2

	
, �6�

where the definition used here for the mean free path is

� = �� 	

2p�
. �7�

Second, as x tends to infinity �i.e., outside of the Knudsen
layer� the shear stress is related to the rate of strain by the
Navier–Stokes constitutive relation:

�d�

dx
�

x→


= −
�

�
. �8�

The final boundary condition that is required to produce a
unique solution to Eqs. �2�–�5�, we obtain by evaluating the
rate of strain at the wall:

�d�

dx
�

x=0
= − 1.7

�

�
. �9�

This value is taken from a curve-fitted approximation to Cer-
cignani’s solution of Kramer’s problem �see Ref. 16 for de-
tails�.

B. Super-Burnett solution

The velocity profile predicted by the super-Burnett equa-
tions can be obtained by solving the ordinary differential
equation �3�:

� = k1 +
�

�
x + k2cos�k3x� + k4sin�k3x� , �10�

where k1–4 are constants. Equation �10� is oscillatory in
space, but since the strain-rate tends to a constant value away
from the surface—enforced by boundary condition �8�—the
oscillatory part must be zero, i.e.,

k2 = k4 = 0. �11�

The resulting solution is linear and, again, equivalent to that
produced by the Navier–Stokes equations �the dashed line in
Fig. 2�.

C. Knudsen layer solutions

The remaining equation sets, Eqs. �2�, �4�, and �5�, can
be solved analytically, and all have solutions of the form:

� = k1 −
�

�
x + k2e±k3x. �12�

Together with the boundary conditions of Eqs. �6�, �8�, and
�9�, this provides the following unique solution for the ve-
locity profile:

� = −
�

�
�x + �� 2

	
+

7

10C
��1 − e−Cx/��� . �13�

For the BGK-Burnett equations, C=�	 /2; for the regular-
ized Burnett equations, C=�5	 /54; for Zhong’s augmented
Burnett equations, C=�3	; and for the R13 equations, C
=�5	 /18.

The velocity profile described by Eq. �13� appears to
have a Knudsen-layer-like form. For each equation set, the
thickness of this Knudsen layer is of the order of a few mean

TABLE II. Values for Knudsen layer thickness in Kramer’s problem, predicted by various higher-order continuum equations and a solution to the linearized
Boltzmann equation.

Solution method Knudsen layer thickness

Burnett �Reference 6�, Super-Burnett �Reference 7�, Grad’s 13 moment �Reference 8�,
Eu’s GH �Reference 9�, Lumpkin’s reduced Burnett �Reference 11�, Woods �Reference 15�

No Knudsen layer predicted

Zhong’s augmented Burnett �Reference 10� 0.9�

Linearized Boltzmann equation �Reference 3��kinetic theory� 1.4�

BGK-Burnett �Reference 12� 2.1�

R13 �Reference 14� 2.8�

Regularized Burnett �Reference 13� 4.9�
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free paths. Qualitatively this is reasonable. Quantitatively,
however, the agreement with the kinetic theory solution and
DSMC data is not particularly good. A comparison is shown
in Table II of the Knudsen layer thickness �here defined as
the distance from the wall at which the strain rate reaches
within 5% of the Navier–Stokes value�. The thickness calcu-
lated by kinetic theory is 1.4�, and that by the various
higher-order continuum equations is in the range 0.9�–4.9�.

Figure 3 shows a comparison of the velocity profiles
predicted by Eq. �13� for the various higher-order formula-
tions and the DSMC and kinetic theory solutions. As a ref-
erence, the Navier–Stokes prediction is also plotted �and is
equivalent to the Burnett, super-Burnett, Grad’s 13 Moment,
Eu’s GH, Lumpkin’s reduced Burnett, and Woods solutions�.
There is a significant spread in the continuum equations’
predictions; the closest match to the discrete-molecular data
is provided by Zhong’s augmented Burnett equations.

V. DISCUSSION AND SUMMARY

Care must be taken in drawing appropriate conclusions
from these results. It would be unjustified to dismiss or ad-
vocate a particular equation set based on a single test case.
However, since the Knudsen layer is such an important fea-
ture of gas microflows, the inability of any model to accu-
rately capture the Knudsen layer in its simplest form might
point to a general problem in that set of model equations for
low-speed microfluidics.

In this paper we have compared high-accuracy DSMC
calculations with a standard kinetic theory solution. The
agreement between these two approaches is good, and so
these serve as a benchmark solution for the form of the
Knudsen layer. Neither the Burnett, super-Burnett, or Grad’s
13 moment equations can model this Knudsen layer, which
then raises the question of whether variant forms of these
basic equation families are likely to be able to demonstrate
any better predictive capabilities. However, qualitatively ac-
curate Knudsen layer predictions can be obtained with a

number of the higher-order continuum equations that we
have considered. Zhong’s augmented Burnett equations pro-
vide the closest agreement with the DMSC data and kinetic
theory, but, in part, this must be coincidental since the aug-
mentations to the original Burnett equations were chosen in
an ad hoc way to ensure stability and not to expand the
physical model.10 On the whole, the ability of the higher-
order equations to quantitatively match the DSMC data is
poor.

Given the difficulty in ascertaining the additional bound-
ary conditions required to generate unique solutions to any
set of higher-order governing equations, it may prove more
practical to incorporate, rather than directly model, Knudsen
layer effects within conventional continuum-fluid methods.
As mentioned above, this could be done either by using pre-
calculated results from kinetic theory to correct Navier–
Stokes solutions obtained with fictitious slip boundary
conditions,4 or by capturing the Knudsen layer structure
within a Navier–Stokes solution by scaling the stress/strain-
rate relationship using a “wall-function” approach.16

The findings of this study are not directly applicable to
high-speed or nonisothermal flows, and we cannot therefore
comment on the usefulness of higher-order continuum equa-
tions for modeling such situations. For incompressible iso-
thermal microflows, however, we have shown that the Knud-
sen layer, which is a dominant rarefaction effect in these
cases, cannot be modeled accurately by the majority of avail-
able higher-order continuum equations. This does, at least,
raise questions about the usefulness of these models for low-
speed gas microflows in general.
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APPENDIX A

For low-speed, low-Kn, isothermal planar Poiseuille
flow, the velocity slip �with diffuse molecular reflection at
the wall� and Knudsen layer effects can both be accounted
for within a Navier–Stokes solution by using “fictitious”
�sometimes called “macro”� slip boundary conditions. Cer-
cignani obtained such conditions from a linearized solution
of the Boltzmann equation for Kramer’s problem:3

�slip = A�
d�

dx
, �A1�

where � is the velocity parallel to the wall, x is the direction
normal to the wall, and the macro slip coefficient is A
=1.146. At low Knudsen numbers, the difference between
the actual velocity profile and the one generated by the
Navier–Stokes equations with boundary condition �A1� is

FIG. 3. Velocity profiles in Kramer’s problem �planar wall at x=0�. DSMC
results for argon �o�; kinetic theory �—�; Navier–Stokes, Burnett, super-
Burnett, Grad’s 13 moment �– –�; R13 �···�; regularized Burnett �– ·�;
Zhong’s augmented Burnett �---�; BGK-Burnett �– ··�. Details of the flow as
given under Fig. 2.
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small and, for these rough estimations, acceptable. This
theory also assumes that the stress is constant through the
Knudsen layer, which for Posieuille flow at Kn=0.05 �based
on half-channel height� is a fair, if not precise, approximation
�the stress varies 	10% from its maximum value over the
Knudsen layer thickness of 2��.

Using Eq. �A1� for velocity slip, the Navier–Stokes so-
lution for the mass-flow rate m is

m = −
2�Gh3

3�
�1 + 3A Kn� , �A2�

where � is the density, � is the viscosity, G is the applied
pressure gradient, and h is half the height of the channel. At
Kn=0.05, the percentage increase in mass-flow rate due to
slip and Knudsen layer effects is therefore 	17%.

According to Cercignani’s solution, the actual �or “mi-
cro” slip� can be obtained with a slip coefficient A=�2/	
	0.8. By substituting this value into Eq. �A2� we can evalu-
ate the contribution to the increased mass-flow rate that is
solely due to velocity slip. This contribution is 	70% of the
change in mass-flow rate. The remaining 30% is due to the
non-Newtonian structure of the Knudsen layer.

APPENDIX B

The Knudsen layer is characterized by a nonlinear rela-
tionship between stress and rate of strain, but it is a linear
phenomenon, i.e., it does not rely on the presence of strong
flow gradients to exist. This is supported theoretically by
linear kinetic theory2,3 and the low-shear DSMC simulations
of this paper. The nonlinear terms featuring in higher-order
continuum equations, which are products of spatial deriva-
tives, can therefore justifiably be neglected in the study of a
low-speed isothermal Knudsen layer.

To verify this assertion we have used DSMC data to
evaluate the magnitude of the possible contribution to shear
stress within the Knudsen layer from higher-order nonlinear
terms. For the Burnett, super-Burnett, and Grad equations
�up to third order in Knudsen number� the only nonlinear
term that exists for the one-dimensional isothermal Knudsen
layer is of the form:

�3

p2 
d�

dx
�3

. �B1�

Using the DSMC data shown in Figs. 2 and 3, the magnitude
of this term has been evaluated at various points in the Knud-
sen layer. The nonlinear contribution to the overall stress is
less than 0.05% in all cases, demonstrating that the lineariza-
tion of the higher-order constitutive relations for Kramer’s
problem is appropriate.
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