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Abstract

The properties of nonlinear fast magnetoacoustic waves in dense dissi-

pative plasmas with degenerate electrons are studied theoretically in the

framework of the Zabolotskaya-Khokhlov (ZK) equation for small but fi-

nite amplitude excitations. Shock-like solutions of the ZK equation are

obtained and are applied to parameters relevant to white dwarf stars.

1 INTRODUCTION

Plasmas with degenerate electrons having number densities comparable with

solids and temperatures of several electron volts fall under the category of warm

dense matter [1, 2] that exists in the core of giant planets [3, 4] and the crusts
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of old stars [5]. High-energy density physics [6] has gained interest due to its

applications in astrophysical and cosmological environments [7, 8, 9, 10], as

well as to inertial fusion science involving intense laser-solid density plasma

interaction experiments [11, 12, 13, 14, 15, 16, 17] and inertial confinement

fusion [18].

The study of radiative blast waves in atomic cluster media us-

ing intense laser pulses has also been reported [19]. Atomic clusters

have been shown to be very efficient absorbers of intense laser radi-

ation. They can be used to create high energy density plasmas that

drive strong shocks (>Mach 50) and radiative blast waves. Careful

application of these equations and similarities allow experiments to

be scaled to astrophysical phenomena that have spatial and temporal

scales that are greater by as much as 15–20 orders of magnitude. In

this way, the radiative blast waves in the laboratory have been scaled

those experienced in supernova remnants and the physics governing

their dynamics investigated under controlled conditions.

An example of plasmas under extreme conditions is the compressed matter

in white dwarf stars [20, 21, 22]. Pulsations observed in white dwarf stars are

thought to be originating from gravity (g-mode) waves in the inhomogeneous

density of the star [23, 24], while compressional (p-mode) waves are still to be

observed. The lack of observations of p-mode waves may be due to that the

p-modes act mainly in the vertical direction, where the vertical motions are

limited by the huge gravity, leading to a very low amplitude of the oscillations

below the detection limit [25]. Detectable, large amplitude acoustic waves could

potentially be excited in extreme events, such as supernova explosions at the

outer shells of the star or during collisions between the white dwarf with other

astrophysical bodies. The self-steepening and shock formation in relativisti-

cally degenerate plasmas have been investigated theoretically [26], while linear

and nonlinear magneto-acoustic waves in magnetized dense plasmas have been

investigated for dissipative and non-dissipative cases [27, 28, 29, 30, 31].

In this paper, we derive the nonlinear Zabolotskaya-Khokhlov (ZK) equa-
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tion for magnetoacoustic waves in a dense dissipative plasma with degenerate

electrons. The development of the ZK equation [32, 33, 34] and its variations

in the 1960’s to the 1980’s was inspired by the interest in nonlinear acoustic

beams together with the emerging developments in laser physics and the cor-

responding models of nonlinear optical beams. The equation sometimes goes

under the name Khokhlov-Zabolotskaya equation [33, 34], and due to the contri-

bution of Kuznetsov [35] to add a dissipative term to describe the propagation

of nonlinear acoustic waves in a dissipative medium, it is sometimes denoted

the Khokhlov-Zabolotskaya-Kuznetsov equation. This and other variations of

the ZK equations have considerable interest in various fields of physics [34] and

mathematics [36, 37]. Since the ZK equation arises in many applications involv-

ing weak nonlinearity and quasi-plane waves, it is generally considered to be a

canonical equation in the same way as the Laplace’s equation is the canonical

equation for linear elliptical systems. Even though equations related to the ZK

equation are used to describe nonlinear magnetohydrodynamic waves in plasmas

[38], the ZK equation itself is rarely mentioned in plasma physics. In Section 2,

the model equations for the system are presented. The ZK equation is derived

in Section 3, and shock-like solutions of the ZK equation are obtained by using

Hirota’s dependent variable transformation [39] and Clarkson-Kruskal approach

[40, 41]. Some applications of our results to magnetized white dwarf stars are

also discussed. Finally, conclusions are drawn in Section 4.

2 GOVERNING EQUATIONS

We consider a dense magnetized plasma consisting of singly charged ions and

inertialess Fermi-degenerate electrons. The magnetic field is directed along the z

direction, i.e. B = (0, 0, Bz), and the spatial variations lie in the xy-plane. The

normalized continuity and momentum equations describing the ion dynamics

are
∂Ni

∂T
+∇ · (NiVi) = 0, (1)
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∂Vi

∂T
+ (Vi · ∇)Vi = E+Vi ×B+ µ1▽2Vi + (µ1 + µ2)∇ (∇ ·Vi) , (2)

where the ion thermal pressure has been neglected in comparison with the

electron degeneracy pressure. Here the ion number density Ni has been nor-

malized by the equilibrium ion number density, ni0, the ion fluid velocity Vi

has been normalized by the Alfvén speed, VA = B0/
√
µ

0
minio, the magnetic

field B has been normalized by the ambient magnetic field B0, the electric

field E = (Ex, Ey, 0) has been normalized by VAB0, µ1 = µ′
1(ωci/V

2
A) is the

normalized kinematic viscosity, and µ2 = µ′
2(ωci/V

2
A) is the normalized sec-

ond coefficient of viscosity. The kinematic viscosity µ′
1 can be estimated as

2.21× 10−15T
5/2
i A

1/2
i /(Z4 lnΛ) [42], where Ai is the atomic weight of the ions,

Z is the ionic charge, Ti is the ion temperature, and lnΛ is the logarithm of

the Coulomb parameter. For a strongly magnetized charged fluid, the kine-

matic viscosity can be estimated as 2.68 × 10−26Z2n2
iA

3/2
i lnΛ/(T

1/2
i B2) [42].

More detailed descriptions of the viscosity in magnetized plasmas are given by

Zhdanov [43] and references therein. The second coefficient of viscosity µ2 is

put equal to −(2/3)µ1 [44, 45]. Here ωci = eB0/mi is the ion cyclotron fre-

quency, e is magnitude of the electron charge, mi is the ion mass, and µ0 is

the magnetic permeability in vacuum. Time T is normalized by ω−1
ci and the

space coordinates by the ion inertial length VA/ωci. The normalized continuity

and momentum equations governing the dynamics of the degenerate inertialess

electrons are given by
∂Ne

∂T
+∇ · (NeVe) = 0, (3)

0 = − (E+Ve ×B)− β▽N
2
3
e . (4)

where the electron number density Ne has been normalized by the equilibrium

electron number density ne0 = ni0, the electron fluid velocity Ve has been

normalized by VA, β = C2
s/V

2
A, Cs =

√
EFe/mi is the ion acoustic speed,

EFe = ~2(3π2ne0)
2/3/(2me) is the electron Fermi energy, ~ = h/2π is the

reduced Planck’s constant, h is Planck’s constant, and me is the electron mass.
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The electric and magnetic fields are governed by Faraday’s law

∂B

∂T
= −▽×E, (5)

and Ampère’s law

▽×B = NiVi −NeVe. (6)

3 LINEAR AND NONLINEAR ANALYSIS

To study small but finite amplitude nonlinear magnetoacoustic waves, we stretch

the independent variables as

ξ = ϵ1/2(X − v0T ), (7)

η = ϵY,

τ = ϵ3/2T,

where ϵ is a small parameter measuring the weakness of the nonlinearity, and

v0 is the wave phase velocity (normalized by VA). Assuming the kinematic

viscosity to be small, we set µ = ϵ1/2κ where µ = 2µ1 + µ2. The perturbed

quantities Nl, Vlx, Vly, Bz, Ex and Ey are expanded in terms of power series of

ϵ about their equilibrium values as:

Nl = 1 + ϵN
(1)
l + ϵ2N

(2)
l + ϵ3N

(3)
l + · · · · ·,

Vlx = 0 + ϵV
(1)
lx + ϵ2V

(2)
lx + ϵ3V

(3)
lx + · · · · ·,

Vly = 0 + ϵ3/2V
(1)
ly + ϵ5/2V

(2)
ly + ϵ7/2V

(3)
ly + · · · · ·,

Bz = 1 + ϵB(1)
z + ϵ2B(2)

z + ϵ3B(3)
z + · · · · ·, (8)

Ex = ϵ3/2E(1)
x + ϵ5/2E(2)

x + ϵ7/2E(3)
x + · · · · ·,

Ey = ϵE(1)
y + ϵ2E(2)

y + ϵ3E(3)
y + · · · · ·,

where l equals e and i for electrons and ions, respectively.

Using the stretched variables in Eqs. (1)-(6), we develop equations in differ-
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ent powers of ϵ. For the lowest order of ϵ, we obtain the following equations

N (1)
e = N

(1)
i = B(1)

z ,

V (1)
ex = V

(1)
ix = E(1)

y = v0B
(1)
z ,

V
(1)
iy = −E(1)

x − v20
∂B

(1)
z

∂ξ
, (9)

V (1)
ey = −E(1)

x − 2

3
β
∂B

(1)
z

∂ξ
.

Solving the system (9) yields the dispersion relation

v0 =

√
1 +

2

3
β. (10)

for linear magnetoacoustic waves.

Collecting the terms of order ϵ2, and using relations (9) and (10), we obtain

∂E
(1)
x

∂ξ
= −v20

∂2B
(1)
z

∂ξ2
− v0

∂B
(1)
z

∂η
. (11)

Finally, the set of equations of order ϵ5/2 (see the Appendix for details) leads

to the Zabolotskaya-Khokhlov (ZK) equation

∂

∂ξ

(
∂B

(1)
z

∂τ
+ PB(1)

z

∂B
(1)
z

∂ξ
−R

∂2B
(1)
z

∂ξ2

)
+W

∂2B
(1)
z

∂η2
= 0, (12)

where

P =
3 + (16/9)β

2
√
1 + (2/3)β

,

R =
κ

2
, (13)

W =
1

2

√
1 +

2

3
β,

is the coefficient of nonlinearity, dissipation, and dispersion, respectively. We

here briefly mention the assumptions used in the derivation of the

ZK equation. The electron inertia and quantum diffraction effects

have been ignored in the electron equation of motion, and since both

these terms are dispersive in nature, the dispersion in the ξ-direction

is absent in the ZK equation. However, the two-dimensionality of
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the problem leads to dispersion due to wave diffraction. Inclusion of

the electron inertia would give the standard Kadomtsev-Petviashvili-

Burgers equation whereas excluding the second dimension η (i.e.

making the problem one-dimensional along ξ) and neglecting the

electron inertia yields the standard Burgers equation. Application

of the two-dimensional Burgers equation to weak shocks modified by

the first-order Fermi acceleration of energetic electrons has been car-

ried out by Zank and Webb [46]. Furthermore, in the current prob-

lem, if we ignore the viscosity, we get the dispersionless Kadomtsev-

Petviashvili equation, whereas the one-dimensional case gives us the

dissipation-free Burgers equation.

Special solutions of the ZK equation (12) can be found by applying numer-

ous methods such as singular manifold method, Bäcklund transformation [47]

etc. However, we here use Hirota’s dependent variable method and Clarkson-

Kruskal’s approach [39, 40, 41] that has been applied to many nonlinear evolu-

tion equations [48, 49, 50, 51]. We assume that Eq. (12) possesses solutions of

form

B(1)
z (ξ, η, τ) = A∂l

ξ∂
m
η ∂n

τ f [z (ξ, η, τ)] + C1, (14)

where the constants A and C1 and the integers l, m, and n are to be determined.

The integers l, m, and n are found by leading-order analysis [51, 52], which are

(1, 0, 0) for the ZK equation. Using symbolic computation, we compare the

coefficient of highest power of zξ and obtain an ordinary differential equation

whose solution f comes out to be

f [z (ξ, η, τ)] = − 2

A

R

P
log[z (ξ, η, τ)]. (15)

Under the set of constraints obtained from the method and assuming ξ−linear

form for z (ξ, η, τ), the solution of Eq. (12) is

B(1)
z (ξ, η, τ) = −k

R

P
tanh

[
1

2

(
kξ + αη + ωτ + γ

)]
− ω

kP
− α2

k2
W

P
. (16)

The obtained solution describes a two-dimensional shock structure, where γ, k,

α, and ω are constants. By choosing a coordinate system such that γ = 0, and
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defining the shock amplitude as Bz0 = 2kR/P and ω = −α2W/k − k2R, gives

a solution that has amplitude B
(1)
z = Bz0 at kξ+αη+ωτ → −∞ and B

(1)
z = 0

at kξ + αη + ωτ → +∞. Choosing α = k tan(θ) where θ is the angle between

the shock normal and the ξ-axis, the solution can be written

B(1)
z (ξ, η, τ) =

Bz0

2
(1− tanh{∆[(ξ + η tan θ)− V0τ ]}), (17)

where ∆ = Bz0P/(4R) is the shock width and V0 = Bz0P/2 +W tan2 θ is the

modification of the shock speed due to nonlinear and geometric effects. The

shock width varies due to an inter-play between nonlinearity and dissipation

while the shock speed increases due to nonlinear effects and diffraction.

A wide range of values exist for the number densities and magnetic fields

[53, 54, 55] in white dwarf stars. Typical values (for non-relativistic densities)

are ni = 1032 − 1035 m−3 and B0 = 102 − 105 T . The values Ti = 3.5 × 104 K,

ni0 = 1032 m−3 and B0 = 105 T give β = 0.06, κ = 0.03, R = 0.015, P = 1.52

and W = 0.51.

4 CONCLUSION

In this paper, we have presented a theory for electromagnetic shock structures

in dense dissipative plasmas consisting of non-degenerate ions and degenerate

inertialess electrons, and have derived the Zabolotskaya-Khokhlov (ZK) equa-

tion. Even though equations related to the ZK equation are used to

model nonlinear magnetohydrodynamic waves in plasmas [38], the ZK

equation itself is rarely mentioned in plasma physics. We have also

discussed the assumptions under which the ZK equation can be ob-

tained in plasmas and the physical meaning has also been discussed.

Shock solution of the ZK equation has been obtained by combining Hirota’s and

Clarkson-Kruskal approaches. It has been pointed out that limiting cases of the

ZK equation yield the dispersionless Kadomtsev-Petviashvili equation and the

one-dimensional Burgers equation while the inclusion of some dispersive effects

would yield the Kadomtsev-Petviashvili-Burgers equation. It should be men-
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tioned that although the results presented here are for degenerate plasmas such

as in the outer shells of white dwarf stars, the theoretical construct is general

and could be applied to classical plasmas as well.

5 Appendix

Using the perturbation scheme, we collect to the lowest order ϵ1 the y-components

of the ion and electron momentum equations and x-component of Ampère’s law,

to obtain

E(1)
y − V

(1)
ix = 0,

V (1)
ex − E(1)

y = 0,

V (1)
ex − V

(1)
ix = 0. (18)

To the next higher order ϵ
3
2 , the ion and electron continuity equations and the

x-components of the ion and electron momentum equations yield

−v0
∂N

(1)
i

∂ξ
+

∂V
(1)
ix

∂ξ
= 0,

−v0
∂N

(1)
e

∂ξ
+

∂V
(1)
ex

∂ξ
= 0,

−v0
∂V

(1)
ix

∂ξ
− E(1)

x − V
(1)
iy = 0,

−2

3
β
∂N

(1)
e

∂ξ
− E(1)

x − V (1)
ey = 0, (19)

while Faraday’s law and the y-component of Ampère’s law give

−v0
∂B

(1)
z

∂ξ
+

∂E
(1)
y

∂ξ
= 0,

∂B
(1)
z

∂ξ
− V (1)

ey + V
(1)
iy = 0. (20)

These equations are used in Eqs. (9) and (10), where the ϵ2-order terms of the

y-component of the ion and electron momentum equations and x-component of
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Ampère’s law give

E(2)
y − V

(2)
ix − V

(1)
ix B(1)

z + v0
∂V

(1)
iy

∂ξ
= 0,

E(2)
y − V (2)

ex − V (1)
ex B(1)

z +
2

3
β
∂N

(1)
e

∂η
= 0,

∂B
(1)
z

∂η
+ V (2)

ex − V
(2)
ix +N (1)

e V (1)
ex −N

(1)
i V

(1)
ix = 0. (21)

The above set of equations is used to obtain the relation between E
(1)
x and

B
(1)
z . The next order ϵ5/2 of the ion and electron continuity equations and the

x-components of the ion and electron momentum equations are

−v0
∂N

(2)
i

∂ξ
+

∂V
(2)
ix

∂ξ
= −∂N

(1)
i

∂τ
− ∂(N

(1)
i V

(1)
ix )

∂ξ
−

∂V
(1)
iy

∂η
,

−v0
∂N

(2)
e

∂ξ
+

∂V
(2)
ex

∂ξ
= −∂N

(1)
e

∂τ
− ∂(N

(1)
e V

(1)
ex )

∂ξ
− ∂V

(1)
ey

∂η
, (22)

−v0
∂V

(2)
ix

∂ξ
− E(2)

x − V
(2)
iy = −∂V

(1)
ix

∂τ
− V

(1)
ix

∂V
(1)
ix

∂ξ
+ V

(1)
iy B(1)

z + κ
∂2V

(1)
ix

∂ξ2
,

2

3
β
∂N

(2)
e

∂ξ
+ E(2)

x + V (2)
ey = −V (1)

ey B(1)
z +

2

9
βN (1)

e

∂N
(1)
e

∂ξ
,

while Faraday’s law and the y-component of Ampere’s law yield

−v0
∂B

(2)
z

∂ξ
+

∂E
(2)
y

∂ξ
+

∂B
(1)
z

∂τ
− ∂E

(1)
x

∂η
= 0,

−∂B
(2)
z

∂ξ
+ V (2)

ey − V
(2)
iy +N (1)

e V (1)
ey −N

(1)
i V

(1)
iy = 0. (23)

The coupled equations (21)-(23) along with Eqs. (10) and (11) are solved to

eliminate N
(2)
i , N

(2)
e , V

(2)
ix , V

(2)
ex , V

(2)
iy , V

(2)
ey , E

(2)
y and E

(2)
x to obtain the ZK

equation (12).
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