Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Condition monitoring of robot joints using statistical and nonlinear dynamics tools

Trendafilova, I. and Van Brussel, H.H. (2003) Condition monitoring of robot joints using statistical and nonlinear dynamics tools. Meccanica, 38 (2). pp. 283-295. ISSN 0025-6455

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper considers the problem for condition monitoring of robot joints employing measured acceleration signals. The study aims at (1) Determining features, to be extracted directly from the measured acceleration signals, to detect defects in robot joints and at (2) Finding features dependent on the size of the fault in order to quantify the present defects. The signals coming from intact robot joints and from joints containing backlash or clearance are analyzed using nonlinear dynamics as well as statistical tools. A method for defect detection that employs nonlinear autoregressive (AR) modeling of the acceleration signals is successfully applied to detect backlash and clearance in robot joints. Two procedures for defect quantification are considered - one of them based on the AR modeling and the other employing nonlinear dynamics and statistical features. The problems are considered in the context of a pattern recognition paradigm.