Picture of aircraft jet engine

Strathclyde research that powers aerospace engineering...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers involved in aerospace engineering and from the Advanced Space Concepts Laboratory - but also other internationally significant research from within the Department of Mechanical & Aerospace Engineering. Discover why Strathclyde is powering international aerospace research...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Condition monitoring of robot joints using statistical and nonlinear dynamics tools

Trendafilova, I. and Van Brussel, H.H. (2003) Condition monitoring of robot joints using statistical and nonlinear dynamics tools. Meccanica, 38 (2). pp. 283-295. ISSN 0025-6455

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper considers the problem for condition monitoring of robot joints employing measured acceleration signals. The study aims at (1) Determining features, to be extracted directly from the measured acceleration signals, to detect defects in robot joints and at (2) Finding features dependent on the size of the fault in order to quantify the present defects. The signals coming from intact robot joints and from joints containing backlash or clearance are analyzed using nonlinear dynamics as well as statistical tools. A method for defect detection that employs nonlinear autoregressive (AR) modeling of the acceleration signals is successfully applied to detect backlash and clearance in robot joints. Two procedures for defect quantification are considered - one of them based on the AR modeling and the other employing nonlinear dynamics and statistical features. The problems are considered in the context of a pattern recognition paradigm.