Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Condition monitoring of robot joints using statistical and nonlinear dynamics tools

Trendafilova, I. and Van Brussel, H.H. (2003) Condition monitoring of robot joints using statistical and nonlinear dynamics tools. Meccanica, 38 (2). pp. 283-295. ISSN 0025-6455

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

This paper considers the problem for condition monitoring of robot joints employing measured acceleration signals. The study aims at (1) Determining features, to be extracted directly from the measured acceleration signals, to detect defects in robot joints and at (2) Finding features dependent on the size of the fault in order to quantify the present defects. The signals coming from intact robot joints and from joints containing backlash or clearance are analyzed using nonlinear dynamics as well as statistical tools. A method for defect detection that employs nonlinear autoregressive (AR) modeling of the acceleration signals is successfully applied to detect backlash and clearance in robot joints. Two procedures for defect quantification are considered - one of them based on the AR modeling and the other employing nonlinear dynamics and statistical features. The problems are considered in the context of a pattern recognition paradigm.