Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Categorisation and pattern recognition methods for damage localisation from vibration measurements

Trendafilova, I. and Heylen, W. (2003) Categorisation and pattern recognition methods for damage localisation from vibration measurements. Mechanical Systems and Signal Processing, 17 (4). pp. 825-836. ISSN 0888-3270

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This study presents a categorisation (classification) approach towards the damage localisation problem from vibration measurements. A stochastic pattern recognition method for solving such problems is introduced. The method suggests the substructuring in order to reduce the possible damage locations to the number of substructures. It utilises the differences in the frequency response functions of the structure in the damaged and the pre-damaged state. As a result, the damaged substructure(s) is (are) detected by classifying all the substructures as members of the two introduced categories - damaged and non-damaged substructures. A finite element model of the structure is used to train the classification system. The method is demonstrated on a test case of a cantilevered beam. It shows rather accurate performance and low error with simulated and noise-contaminated data. The method can be applied independently for locating a damage in a structure, but it can also be combined with a consequent identification (updating) procedure for more precise localisation and quantification of the existing damage. In the latter case, the subsequent localisation and quantification procedure is restricted to the damaged substructure(s), which facilitates the process and makes it less time consuming.