Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Effective compression of hyperspectral imagery using an improved 3D DCT approach for land cover analysis in remote sensing applications

Qiao, Tong and Ren, Jinchang and Sun, Meijun and Zheng, Jiangbin and Marshall, Stephen (2014) Effective compression of hyperspectral imagery using an improved 3D DCT approach for land cover analysis in remote sensing applications. International Journal of Remote Sensing, 35 (20). pp. 7316-7337. ISSN 0143-1161

[img]
Preview
PDF (Qiao-etal-3D-HSI-land-cover-analysis-2014-IJRS)
Qiao_etal_3D_HSI_land_cover_analysis_2014_IJRS.pdf - Accepted Author Manuscript

Download (507kB) | Preview

Abstract

Although hyperspectral imagery (HSI), which has been applied in a wide range of applications, suffers from very large volumes of data, its uncompressed representation is still preferred to avoid compression loss for accurate data analysis. In this paper, we focus on quality-assured lossy compression of HSI, where the accuracy of analysis from decoded data is taken as a key criterion to assess the efficacy of coding. An improved 3D Discrete Cosine Transform (DCT) based approach is proposed, where a Support Vector Machine (SVM) is applied to optimally determine the weighting of inter-band correlation within the quantisation matrix. In addition to the conventional quantitative metrics Signal-to-Noise Ratio (SNR) and Structural Similarity (SSIM) for performance assessment, the classification accuracy on decoded data from the SVM is adopted for quality-assured evaluation, where the Set Partitioning in Hierarchical Trees (SPIHT) method with 3D Discrete Wavelet Transform (DWT) is used for benchmarking. Results on four publically available HSI datasets have indicated that our approach outperforms SPIHT in both subjective (qualitative) and objective (quantitative) assessments for land cover analysis in remote sensing applications. Moreover, our approach is more efficient and generates much reduced degradation for subsequent data classification hence provides a more efficient and quality-assured solution in effective compression of HSI.