Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Modeling and nonlinear model predictive control of kite system for high altitude wind energy generation

Zhao, Zhenhua and Yang, Jun and Yue, Hong and Li, Shihua (2014) Modeling and nonlinear model predictive control of kite system for high altitude wind energy generation. In: Chinese Control Conference, CCC. IEEE, pp. 6998-7003. ISBN 9789881563842

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Kitenergy is an emerging technology in airborne wind energy (AWE) that captures high altitude wind energy (HAWE) by exploiting its controlled flight of tethered wings. Compared with its ground level counterparts, AWE has the advantages to harness wind energy with a higher efficiency and a more consistent behavior. Automatic control of the kite's airfoils is crucial to the proper running of kitenergy systems. In this paper, a control oriented model of a tethered kite system is developed step by step, and a simplified state-space model is established as a first attempt. Based on this model, a nonlinear model predictive controller (NMPC) is designed to track a pre-optimized figure-eight trajectory. The merits of the NMPC are validated by simulation studies on a practical-scale kitenergy system model.