Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Classification of bijections between 321- and 132-avoiding permutations

Claesson, Anders and Kitaev, Sergey (2008) Classification of bijections between 321- and 132-avoiding permutations. In: 20th International Conference on Formal Power Series & Algebraic Combinatorics, 2008-06-23 - 2008-06-27.

Full text not available in this repository. Request a copy from the Strathclyde author


It is well-known, and was first established by Knuth in 1969, that the number of 321-avoiding permutations is equal to that of 132-avoiding permutations. In the literature one can find many subsequent bijective proofs confirming this fact. It turns out that some of the published bijections can easily be obtained from others. In this paper we describe all bijections we were able to find in the literature and we show how they are related to each other (via ``trivial'' bijections). Thus, we give a comprehensive survey and a systematic analysis of these bijections. We also analyze how many permutation statistics (from a fixed, but large, set of statistics) each of the known bijections preserves, obtaining substantial extensions of known results. We also give a recursive description of the algorithmic bijection given by Richards in 1988 (combined with a bijection by Knuth from 1969). This bijection is equivalent to the celebrated bijection of Simion and Schmidt (1985), as well as to the bijection given by Krattenthaler in 2001, and it respects 11 statistics (the largest number of statistics any of the bijections respect).