Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Crucial words for abelian powers

Glen, Amy and Halldorsson, Bjarni and Kitaev, Sergey (2009) Crucial words for abelian powers. In: Developments in Language Theory. Lecture Notes in Computer Science . Springer-Verlag Berlin, pp. 264-275. ISBN 978-3-642-02736-9

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Let k ≥ 2 be an integer. An abelian k -th power is a word of the form X 1 X 2 ⋯ X k where X i is a permutation of X 1 for 2 ≤ i ≤ k. In this paper, we consider crucial words for abelian k-th powers, i.e., finite words that avoid abelian k-th powers, but which cannot be extended to the right by any letter of their own alphabets without creating an abelian k-th power. More specifically, we consider the problem of determining the minimal length of a crucial word avoiding abelian k-th powers. This problem has already been solved for abelian squares by Evdokimov and Kitaev [6], who showed that a minimal crucial word over an n-letter alphabet An={1,2,…,n} avoiding abelian squares has length 4n − 7 for n ≥ 3. Extending this result, we prove that a minimal crucial word over An avoiding abelian cubes has length 9n − 13 for n ≥ 5, and it has length 2, 5, 11, and 20 for n = 1,2,3, and 4, respectively. Moreover, for n ≥ 4 and k ≥ 2, we give a construction of length k 2(n − 1) − k − 1 of a crucial word over An avoiding abelian k-th powers. This construction gives the minimal length for k = 2 and k = 3.