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Abstract 

Percutaneous heart valves provide a promising future for patients refused surgery on the grounds of 

significant technical challenges or high risk for complications. Since the first human intervention more 

than 10 years ago, over 50 different types of valves have been developed. The CoreValve and Edwards 

SAPIEN valves have both experienced clinical trials and the latter has gained FDA approval for 

implantation in patients considered inoperable. Current complications such as major vascular bleeding 

and stroke prevent these valves from being commonly deployed in patients considered operable in 

conventional surgery. This review focuses on the past and present achievements of these valves and 

highlights the design considerations required to progress development further. It is envisaged that with 

continued improvement in valve design and with increased clinical and engineering experience, 

percutaneous heart valve replacement may one day be a viable option for lower risk operable patients. 
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Introduction 

 

Treatment through transcatheter intervention can be traced back to the 1950’s when a urethral 

catheter encasing a wire was passed through to perform a pulmonary valvulotomy. The wire 

was used to cut the fused commissures of the valve to free the leaflets.
1
 Percutaneous 

technologies have since been extensively used to treat other pathologies: balloon dilation has 

been used to perform aortic valvuloplasty or treat aortic coarctation, and more commonly, 

angioplasty has been employed to treat atherosclerotic obstructions. In fact the first 

percutaneous valve was developed in 1965 to experimentally resolve aortic regurgitation in 

dogs.
2
 An umbrella shaped valve was mounted on a catheter and inserted distally in the 

ascending aorta to allow blood to flow past but prevented reverse flow. Similar designs 

followed, including an umbrella shaped catheter mounted valve and a catheter mounted 

polyurethane cusp deployed percutaneously in the ascending aorta of canine models.
3, 4

 These 

past valves only offered temporary relief from aortic insufficiency and were not considered 

long term solutions. It was the development of a heart valve by Andersen et al. in 1989 

deployed percutaneously over the native leaflets which opened a window of opportunity for 

severe AS patients who cannot undergo surgical AVR due to comorbidities and who would 

have otherwise had a low chance of survival after 1-2 years following disease onset.
5
  

 

Since the first human implantation in 2002, there have been over 50,000 cases of 

transcatheter aortic valve replacements (TAVR) in over 40 countries. Two of the most widely 

used valves; the Medtronic CoreValve
TM

 prosthesis and the Edwards SAPIEN valve have 

both received the CE Mark of approval for commercial sale in Europe in 2007.
6
 Previously 



their use was limited to high risk older patients who had been refused conventional surgical 

AVR. However, patient selection for TAVR is shifting towards lower risk patients, the 

outcomes of which are currently being investigated in the PARTNER II and SURTAVI 

trials.
7
 From an economic viewpoint, the 12-month cost of transfemoral TAVR from the 

Cribier Edwards PARTNER trial was found to be comparable to AVR at $73,219 and 

$74,067 respectively.
8
 The same study found the cost effectiveness which factored patient 

quality of life (QoL) to be better in 70.9% of patients with transfemoral TAVR compared to 

AVR, although transapical TAVR was found to be least cost effective. These delivery 

techniques and the existing transcatheter valves in development and clinical trials are 

discussed in greater detail below. With increased learning and use of a multi-disciplinary 

team and equipment, it is envisaged that TAVR may one day overtake surgical AVR as the 

gold standard treatment for aortic stenosis. 

 

First generation percutaneous heart valves 

 

History 

 

Andersen et al. carried out the first study of percutaneous heart valves (PHV) on animals 

using a porcine aortic valve.
5
 The stent consisted of two wires folded about 15 times, with 3 

of the folds higher than the rest to accommodate the commissures of the valve (Figure 1). The 

heart valve-stent assembly was then crimped onto a 3-foiled balloon dilation catheter and 

passed retrogradely to the descending aorta. Once the PHV was positioned over the native 

valve, the balloon was inflated to expand the crimped valve, flattening the native leaflets 

between the stent and aortic wall. Following withdrawal of the balloon, the valve 

immediately began to function. Wires extending from the edges of the stents allowed external 

fixation to the aorta.  

 

 

 

Figure 1. Percutaneous valve developed by Anderson et al. (a) stent assembly, (b) porcine aortic valve sutured 

to stent and (c) aortic view of valve. 

 



 

In the same year, Pavcnik et al. also conducted a percutaneous heart valve replacement on 

dogs using a ball and cage type design.
9
 In their study, a Gianturco stainless steel stent which 

was self-expandable was used to form a cage and a detachable latex balloon was used for the 

ball which was expanded by filling with either air or a pre-polymer. Once the stent-ring 

assembly had been deployed over the native valve, the latex balloon was then inserted into 

the assembly and inflated to its predetermined diameter. Following deployment, the ring was 

found to be successfully placed below the coronary ostia in all 12 dogs and was securely 

anchored by barbs. However, in three of the dogs, the ball was reported to have escaped from 

the cage and into the aorta. Another major setback was the non-biocompatibility of the latex 

ball which made it susceptible to long term degradation due to the enzymes and fatty acids in 

circulation.  

 

In 2002, Boudjemline and Bonhoeffer described in more detail a PHV replacement, which 

they had previously developed, in 12 lambs.
10

 The PHV consisted of a valve from a bovine 

jugular vein mounted onto a platinum-iridium balloon expandable stent (Figure 2. Early 
percutaneous heart valves; (a) the Bonhoeffer valve78, (b) the Lutter valve12 and (c) the Paniagua 
heart valve (reprinted from EuroIntervention Vol / 1, Paniagua D, Condado J, Mejia C, Induni E, Fish 
R., Paniagua heart valve preclinical testing and transcatheter implantation of an aortic valve 

prosthesis. A9–A13, Copyright (2007), with permission from Europa Digital & Publishing).  a).
11

 To 

reduce the risk of coronary artery occlusion, space was made by dissecting the venous wall 

around the coronary orifices.  

 

A problem with balloon expandable stents is the need for rapid ventricular pacing (RVP) 

which is necessary to prevent balloon migration but may cause hemodynamic disturbances. 

Lutter et al. designed a PHV taken from porcine cadavers or pericardial tissue contained 

within a self-expanding stent (Figure 2. Early percutaneous heart valves; (a) the Bonhoeffer 
valve78, (b) the Lutter valve12 and (c) the Paniagua heart valve (reprinted from EuroIntervention Vol / 
1, Paniagua D, Condado J, Mejia C, Induni E, Fish R., Paniagua heart valve preclinical testing and 
transcatheter implantation of an aortic valve prosthesis. A9–A13, Copyright (2007), with permission 

from Europa Digital & Publishing).  b).
12

 The stent was contained within a sheath which was 

unsheathed to allow the stent to expand radially within the aortic annulus. The self-expanding 

stent eliminates the fixed diameter issue with balloon expandable valves and enables a better 

fit within the aortic annulus. In 2000, Paniagua developed a percutaneous heart valve which 

was in vitro and animal tested prior to human implantation (Figure 2. Early percutaneous heart 
valves; (a) the Bonhoeffer valve78, (b) the Lutter valve12 and (c) the Paniagua heart valve (reprinted 
from EuroIntervention Vol / 1, Paniagua D, Condado J, Mejia C, Induni E, Fish R., Paniagua heart 
valve preclinical testing and transcatheter implantation of an aortic valve prosthesis. A9–A13, 

Copyright (2007), with permission from Europa Digital & Publishing).  c).
13, 14

 Despite the 

complications in earlier valves, these studies proved that TAVR is feasible and paved the way 

for the next generation of heart valves; the Cribier Edwards valve and the CoreValve 

prosthesis. 

 

 



 

Figure 2. Early percutaneous heart valves; (a) the Bonhoeffer valve78, (b) the Lutter valve12 and (c) the Paniagua 

heart valve (reprinted from EuroIntervention Vol / 1, Paniagua D, Condado J, Mejia C, Induni E, Fish R., 

Paniagua heart valve preclinical testing and transcatheter implantation of an aortic valve prosthesis. A9–A13, 

Copyright (2007), with permission from Europa Digital & Publishing).   

Cribier Edwards valve 

 

Professor Alain Cribier was the first to describe balloon valvuloplasty for the treatment of 

aortic stenosis in 1986 and also the first to implant PHV in a human in 2002. Cribier et al. 

implanted their balloon expandable valve into a 57 year old man.
15

 The patient was suffering 

from calcific aortic stenosis (AS), cardiogenic shock and severe leg ischemia and was 

declined conventional AVR by several surgeons. The authors gained ethical approval on 

compassionate grounds, and a PHV was inserted through a 24 Fr (1 mm = 3 Fr) sheath in an 

antegrade approach through the right femoral vein following balloon valvuloplasty of the 

native aortic valve. They used bovine pericardium sutured onto a short stainless steel stent 

which was crimped onto a balloon catheter and deployed into the native position of the aortic 

valve. The shorter length of the stent reduced the chance of coronary ostia occlusion, which 

was a problem with some of the longer stents reported by Lutter and colleagues.
12

 

Immediately after the procedure, there was improvement in the transvalvular pressure 

gradient (TVG) from 30 mmHg to 6 mmHg and the left ventricular ejection volume increased 

from 14% to 17%. However, the patient died 17 weeks after PHV due to non-cardiac related 

complications so no long term follow-up data was available. 

 

Following success of their first human trial, Cribier et al. implanted their stent-valve into a 

further 6 patients, as they reported in 2004.
16

 Improvements were made to the stent-valve by 

forming the leaflets from equine pericardium (which was similar to the thickness of bovine 

pericardium though more compliant) and suturing them to a reinforced stainless steel tubular 

stent. The PHV was assembled onto a 22 mm or 23 mm diameter balloon catheter using a 

crimping device and advanced through a 24 Fr sheath using the same antegrade approach as 

their previous study. Once positioned over the native valve, the balloon was inflated to 

expand the valve and flatten the native leaflets between the stent and aortic sinuses. 

Immediately there was an improvement in the aortic orifice area, averaging 1.7 cm
2
, and a 

decrease in the TVG in all but one of the patients. Early migration of the PHV into the 

ascending aorta with subsequent death occurred in this patient who presented with 

cardiogenic shock, associated with severe aortic stenosis and massive aortic regurgitation due 



to a previous balloon aortic valvuloplasty-induced valve tear. In all valves, there was no 

reported regurgitation although paravalvular leakage did occur. A post mortem on a patient 

who had died of non-cardiac related complications revealed calcific nodules of the native 

valve which were responsible for an inadequate positioning of the valve leading to 

paravalvular leakage. 

 

The PHV used in the studies by Cribier et al. were produced by Percutaneous Valve 

Technologies which was later acquired by Edwards LifeSciences (Irvine, CA) and is now 

known as the Cribier-Edwards valve.
17

 The valve has since undergone a few design changes 

to drop down from a 24 Fr to an 18 Fr delivery profile (Figure 3). Initially equine pericardium 

was replaced with the more durable bovine pericardium to develop the Edwards-SAPIEN
®

 

valve. The stent has since been modified from stainless steel to a thinner cobalt-chromium 

stent with fewer struts to form the Edwards SAPIEN XT
®

 valve. Additionally the leaflets 

have a scalloped shape which overall reduced the profile of the SAPIENT XT
®

 valve. A 

polyester skirt sutured to the stent reduces paravalvular leakage. Edwards LifeSciences have 

also developed two other valves currently in early clinical trials; the SAPIEN 3 and the self-

expanding CENTERA valve.  

 

Figure 3. Evolution of the Cribier Edwards valve; (a) first generation equine pericardial valve,16 (b) SAPIEN valve 

and (c) the low profile SAPIEN XT valve, both with bovine pericardium (images courtesy of Edwards 

LifeSciences). 

 

In November 2011, the Edwards SAPIEN
®

 valve was the first PHV to gain FDA approval for 

conventionary inoperable patients in the US. This followed results of the PARTNER trial 

which was the largest study to date comparing surgical AVR to TAVR. The results of this 

trial are discussed later on in this review. There are 4 catheter diameters; the 20 and 23 mm 

valves are housed in an 18 Fr sheath and the 26 mm and 29 mm valves are housed in a 19 Fr 

and 22 Fr sheath respectively.
19

 They are suitable for native annuli diameters ranging from 

16-27 mm. An expandable sheath known as the eSHEATH
®

 which is currently only available 

in Europe and Canada enabled reduced delivery profiles of 16 Fr, 18 Fr and 20 Fr to be 

feasible. They expand only when the valve is passed through and collapse back to their 

reduced diameter, thereby reducing the time the arteries are exposed to large strains. These 

sheaths allow for an acceptable minimal iliofemoral arterial diameter of 6, 6.5 and 7 mm 

respectively.
20

 

CoreValve prosthesis 

 



Grube et al. reported on a study that involved a PHV known as the CoreValve (Medtronic 

Inc., Minneapolis, USA), which was made from porcine pericardium sutured onto a self-

expanding nitinol stent.
21

 Porcine is considerably thinner (typically 200µm thick) and stiffer 

than both bovine and equine pericardium. The nitinol material is a shape memory alloy of 

nickel and titanium which has the ability to deform at low temperatures but regain its original 

shape at body temperature. The CoreValve stent was designed so that the proximal end had a 

larger diameter than the distal end, allowing secure fixation onto the ascending aorta. The 

middle of the stent was also slightly narrowed to prevent occlusion of the coronary ostia.  

 

Extracorporeal circulation through the left common femoral artery and vein was employed 

for hemodynamic support during the PHV deployment, although RVP could have also been 

used.
21

 The overall valve stent assembly was inserted into a 24 Fr catheter sheath which was 

advanced through the left common iliac artery via a retrograde approach over the native 

aortic valve. Once the correct position was asserted, the sheath was withdrawn, deploying the 

self-expanding valve.  

 

In a later study by the same group, the sheath was brought down to an 18 Fr size.
22

 In their 

study, a comparison was made between delivery of the second generation device (21 Fr) and 

the third generation device (18 Fr). Their results showed a significant improvement in the 18 

Fr catheters compared with the 21 Fr catheters which led to a time reduction of 148 ± 50 min 

compared to 188 ± 55 min respectively. 64% of patients with the 18 Fr catheters did not 

require extracorporeal support whereas all patients with the 21 Fr catheters did. Moreover, 

42% of patients with the 18 Fr catheters did not require a surgical cut down of the access 

vessel and 25% of the 18 Fr catheters only needed local anaesthesia of the groin compared to 

none in the 21 Fr group, who required general anaesthesia. In a large single trial study by 

Grube et al. procedural success rates improved from 70.0% in the first generation valves to 

91.2% in the third generation valves.
23

 The study also highlighted the high incidence of atrio-

ventricular (AV) block occurring in PHV procedures compared with surgery. A higher 

incidence of patients fitted with a pacemaker was reported in the 18 Fr valve, although this 

was attributed to a change in policy to provide a 48 hour temporary pacemaker fitting. The 

CoreValve is available in 3 sizes; 26 mm, 29 mm and 31 mm and accommodate native 

annular diameters of 20-29 mm.
20

 

 



 

Figure 4. (a) First21
 and (b) Third generation of the CoreValve® prosthesis and (c) CoreValve® EvolutTM 

prosthesis, (images with the courtesy of Medtronic). 

 

Transcatheter approaches 

Clinical evaluation and imaging 

 

Following over 50,000 procedures, TAVR is currently recommended to be performed only in 

cardiology and cardiac surgery centres. This enables procedures to be quickly transferred to 

surgery in the case of complications. A hybrid approach consisting of a multi-disciplinary 

team of clinical cardiologists, interventionists, surgeons, anaesthetists and imaging specialists 

are involved in the technical process and pre- and post-procedural patient care and 

evaluation.
24

  

 

Two scoring systems have been used in the past to assist in determining patient eligibility and 

predict mortality rates for TAVR; the logistic EuroSCORE I and the Society of Thoracic 

Surgeons Predicted Risk of Mortality (STS PROM). However, recent outcomes from trials 

have highlighted the need for better predictive scoring systems which would factor frailty and 

comorbidities such as coronary arterial disease and congenital bicuspid valves which may 

contraindicate TAVR.
25-27

 Updated surgical risk algorithms such as the logistic EuroSCORE 

II and STS are expected to provide a better predictive mortality rate in high risk patients.
20

 

Additionally, the success of AVR in older patients depends on the skill of the surgical centre 

rather than age alone and therefore TAVR should be compared with results from highly 

skilled surgeons rather than depend on the risk scores.
28

   

 

As TAVR is largely non-invasive, correct imaging of the aorta, its valvular complex, the left 

ventricle and the arterial vasculature is of utmost importance in helping determine the route to 

adopt and prosthesis sizing. Additionally, the team needs to be able to visualise deployment 

in order to avoid complications such as stent migration or incorrect positioning. This involves 

a combination of echocardiography, right and left heart catheterization, left ventriculography, 



supra-aortic angiography, and coronary angiography.
29

 The arterial vasculature is imaged 

using angiography to determine the feasibility of a transfemoral approach. Tortuosity is not 

necessarily a contra-indication to iliofemoral arterial access since patients with healthy albeit 

tortuous arteries can still undergo transfemoral-TAVR, whereas patients with larger but 

heavily sclerotic arteries may not be suitable candidates. Although there are no clinical 

indications as to which transcatheter approach is superior, a ‘transfemoral first’ decision is 

usually adopted before considering other methods. 

 

Imaging of the aortic annulus has generally been performed through either the use of 

transthoracic (TTE) or and transesophageal echocardiography (TEE). TEE in particular has 

been favoured for accurate imaging when performing a transapical TAVR due to the close 

proximity of the TEE probe to the aorta. The general shape of the aortic annulus and LVOT is 

elliptical and two-dimensional echocardiography may not be able to correctly determine the 

largest annulus size. Three-dimensional TEE has been found to be measure a larger annulus 

diameter and be more likely to correctly predict the final prosthesis size compared to 2D 

TEE.
30, 31

 Ng et al., however, found that both 2D and 3D TEE significantly underestimated 

the annular area by 16.4% and 12.9% respectively, when compared with multi-slice 

computed tomography (MSCT).
32

 Similar findings have also been reported with other 

authors.
33, 34

 Underestimation of the EOA can lead to a patient-prosthetic mismatch (PPM) 

and imaging may be better suited to three-dimensional analysis using MSCT or magnetic 

resonance imaging. 

 

Antegrade transseptal approach 

 

The antegrade transseptal approach reported by Cribier et al. involves access through the 

right femoral vein, an atrial transseptal entry, through the mitral valve into the aortic 

annulus.
15, 16

 Initially a stiff guide-wire is advanced from the right femoral vein through the 

interatrial septum to the descending aorta and externalized through the left femoral artery. A 

stented valve crimped over a 24 Fr balloon catheter is advanced through the guide wire and 

deployed over the native leaflets. Rapid pacing of the right ventricle is used to decrease aortic 

blood flow during valve deployment. This approach enables large stent mounted catheters to 

be used and would also allow a more precise placement of the prosthesis as there is less 

motion of the large delivery system during the cardiac cycle. Additionally, the antegrade 

approach enables the valve to bypass the calcific side of the native leaflets.  However, this 

approach is technically challenging and prone to complications due to the close proximity of 

the mitral valve. The procedure has been largely dropped in favour of the retrograde approach 

through the femoral arteries. 

 

Transfemoral retrograde approach 

 

Panigua et al. were the first to report a clinical case in 2003 with the retrograde approach, of a 

valve with a collapsed profile of 2 mm and a 12-16 Fr introducer shield.
35

 Due to the low 

profile of their valve, they were able to deliver it in a 62 year old man through the right 

femoral artery, the abdominal aorta and the left ventricle. The TVG dropped to < 5 mmHg 



and cardiac output increased from 1 L/min to 5 L/min. Although the patient died 5 days later 

due to biventricular failure and refractory hypotension, valve function was deemed 

satisfactory following echo-Doppler evaluation. At that time, other PHVs including the first 

generation CoreValve™ reported use of the transfemoral TAVR (TF-AVR) with favourable 

outcomes.
21, 36, 37

 This approach became increasingly more popular following reduction in 

sheath sizes of the next generation PHVs.  

 

The general procedure for TF-AVR involves a surgical cut down or a puncture for a fully 

percutaneous access to the common femoral artery. Depending on the protocol practised in 

the centre, the patient is given either a general or local anaesthetic and mildly sedated. TEE, 

fluoroscopy and aortography are commonly adopted to visualise the vasculature and provide 

guidance during valve deployment.
38

 Initially a guide wire is passed through from the femoral 

artery to the aorta which is then exchanged for an extra stiff 0.035" guide-wire. A balloon 

catheter is passed through to pre-dilate the valve. RVP of the right ventricle at approximately 

200 bpm is performed to reduce aortic flow and prevent distal migration of the balloon. An 

introducer sheath is inserted into the femoral artery and the PHV and catheter assembly are 

then advanced through the sheath to the descending aorta and over the native valve. Once in 

the correct position, the valve is unsheathed to enable the stent to self-expand or a balloon is 

used to expand the valve which begins functioning immediately. RVP is again practised in 

balloon expandable valves and should only be carried out once blood pressure has returned to 

normal following disrupted hemodynamics from previous pacing. The introduction of 

steerable delivery catheters such as the Retroflex and Novaflex catheters developed by 

Edwards LifeSciences made the retrograde approach more feasible (Figure 5). 

 

 

 

 

Figure 2. Edwards SAPIEN XT delivery; (A) Novaflex balloon catheter in collapsed and expanded state and 

(B) the Novaflex handle.39 

 

 



First generation PHV required sheaths as large as 24 Fr which could lead to major vascular 

complications particularly in iliofemoral tortuous arteries. However with the introduction of 

lower 16-18 Fr delivery profiles, incidence of this complication is expected to decrease. An 

18 Fr catheter would enable easy delivery through femoral arteries as small as 6-7 mm 

compared with the 8-9 mm artery diameter needed with the 21 Fr catheters. The smaller 

catheter size would also be a suitable candidate for younger patients and females who 

generally have smaller femoral arteries. 
40

 However the retrograde approach would still be 

unsuitable for patients with femoral or iliac artery disease in which the arteries could be 

tortuous or in heavily calcified arteries, making a percutaneous delivery difficult.  

 

Transapical aortic intervention 

 

In 2006, Lichtenstein et al. were the first to describe an approach in which the aortic valve 

was delivered through the apex of the left ventricle without needing cardiopulmonary 

bypass.
41

 They used a Cribier-Edwards balloon expandable valve via a 24 Fr sheath in 7 

patients and reported favourable results, with an improvement in median area from 0.7 cm
2
 to 

1.8 cm
2
 post procedure and 1.6 cm

2
 at 1 month follow up. Paravalvular leakage was reported 

to be a common complication although it was not considered to be clinically significant. The 

authors also noted that potential complications of this procedure could include myocardial 

perforation and mitral valve or aortic valve damage.  

 

The transapical aortic valve replacement (TA-AVR) involves making a cut at the 5
th

 or 6
th

 

intercostal space to expose the left ventricular apex. A superstiff guidewire is passed 

antegradely through a puncture in the apex, through the aortic valve and into the ascending 

aorta. After a pre-dilation with a balloon valvuloplasty, the sheath containing the valve is then 

advanced through the apex to the aortic valve using the guidewire to manipulate the valve to 

the correct position.
42

 With the Edwards SAPIEN valve, expansion is held for 5 seconds 

under RVP. Over-sizing of the prosthesis and moderate over-dilating can reduce the risk of 

paravalvular leakage and is frequently practised. Excessive dilation can lead to regurgitation 

and inadequate leaflet coaptation.
41

 

 

A study was carried out on 71 patients who underwent TA-AVR with a Cribier Edwards 

valve having been turned down for surgical replacement and percutaneous TF-AVR. 

Mortality after 30 days was 16.9%, 33% of which occurred in the first 15 patients which 

suggests a learning curve with this approach.
43

 In another study, the TA approach was 

evaluated in 299 patients who were divided into an early experience and recent experience 

group which were conducted pre- and post CE approval of TA aortic valve intervention.
44

 In 

their study, 30-day mortality rate was lower in the latter group. Results from the SOURCE 

registry have demonstrated that TA-AVR has similar procedural success rates to TF-AVR 

(92.7% vs. 95.2%). TF-AVR had a higher survival rate at 1 year (81.1% vs. 72.1%), however 

patients enrolled for a TA-AVR had more comorbidities and a higher baseline EuroSCORE.
45

 

 



Valves designed especially for a TA-AVR approach have been developed and are undergoing 

clinical trials. The Symetis Acurate TA
™

 valve includes a porcine heart valve sutured to a 

nitinol stent with a Dacron skirt which has been found to reduce paravalvular leakage (Figure 

6a). It is unsheathed in the ventricle through a two-step implantation procedure. This valve 

was tested in 40 high risk patients with survival rates of 87.5% and 82.5% at 30 days and 6 

months follow-up.
46, 47

 The Engager
™

 valve has scalloped bovine pericardial leaflets sutured 

to a self-expanding nitinol stent (Figure 6b). The stent has a support frame which clips over 

the native leaflets and a polyester skirt which seats at the base of the sinuses. The JenaValve
™

 

consists of a porcine aortic valve sutured to a nitinol stent with a feeler to guide positioning 

and a clip which fits over the native leaflet (Figure 6c). During release of the JenaValve
™

, the 

sheath is partially retracted to release the feelers and enable correct anatomical positioning 

such as commissural alignment. The prosthesis then expands at the proximal end but remains 

connected at the distal end, enabling it to be retrieved and repositioned if necessary. This 

implantation procedure enables TA-AVR to be carried out without the need for RVP.  

 

Other transcatheter approaches 

 

Other approaches have been adopted including trans-aortic, -subclavian and -axillary, all of 

which enable bypass of the femoral arteries, enabling larger catheter sheaths to be used at a 

shorter distance. The trans-aortic approach is performed through a right anterior thoracotomy 

or  a partial upper J- or T- shaped median sternotomy and has been used with both the 

CoreValve and Edwards valves. Trans-subclavian and trans-axillary approaches require a 

surgical cut-down to isolate the respective arteries. The trans-subclavian approach can lead to 

serious and life threatening complications, giving the trans-axillary approach an advantage in 

that its occlusion could be compensated through other arteries. 

 

 

 

Figure 3. Transapical Valves; (a) Symetis AcurateTM, (b) Medronic Engager and (c) 2nd Generation JenaValve.48 

 

 



 

Figure 4. Transcatheter approaches a) Retrograde transfemoral approach, b) Antegrade transseptal approach, (c) 

trans-aortic approach, (d) trans-subclavian artery and (e) trans-axillary approach.19 

 

 

Repositionable and retrievable percutaneous heart valves 

 

The main problem with the first generation valves were that once deployed they could not be 

repositioned or retrieved. Correct valvular alignment and positioning has already been 

indicated from trial outcomes to be a necessity to reduce incidence of paravalvular leakage 

and obstruction of the coronary ostia. Additionally, it could lead to other complications 

including stent migration, fracture and mitral regurgitation. As such, it is desirable to have a 

valve which could be fully retrieved and repositioned in cases where a valve has been 

deployed in a suboptimal position. 

 

The second and third generation CoreValve prosthesis had the ability to be fully retrievable 

after two thirds of the prosthesis had been deployed. However, the first fully repositionable 

PHV was the Sadra Medical self-expanding Lotus
™

 Valve prosthesis reported in a patient 

study by Buellesfeld et al.
49

 The valve (Figure 5) consisted of a bovine pericardial tissue 

sutured onto a braided nitinol stent which had a similar design concept to the “Chinese Finger 

Trap” principle.
48

 During delivery in a 21 Fr sheath, the stent undertook a longitudinal and 

narrowed shape which, when unsheathed, shrank in length and expanded radially outwards. 

This created a high radial force and reduced the risk of coronary ostia occlusion. The 

prosthesis also incorporated a self-locking mechanism, which allowed the entire valve to be 

retrieved and repositioned as necessary by unlocking it. 

 



 

Figure 5. The Lotus TM heart valve is a bovine pericardial valve sutured onto a braided self-expandable stent, 

shown with the stent expanded and shortened.  

 

 

Figure 6. The Direct Flow Medical valve (Image courtesy of Direct Flow Medical Inc.) 

 

The Direct Flow Medical (DFM) heart valve consists of a bovine pericardial tissue tri-leaflet 

valve within a sheathed delivery system (Figure 6). The leaflets are treated with anti-

calcification and sutured into inflatable Dacron cuffs which create a tight seal and reduce 

paravalvular leakage.
50

 Once the position of the valve is determined, the aortic and 

ventricular cuffs are inflated for fixation into the aortic annulus. These cuffs are inflated with 

either air or a contrast and saline solution which are then exchanged with a proprietary 

inflation medium (IM) whilst maintaining pressure to keep the valve expanded. The IM gel 

achieves 95% of its final hardness within hours.
50

 The delivery system consists of a 15 Fr 

multi-lumen catheter, and the implant is housed in the distal end which is 22 Fr in size. Three 

position/fill lumens (PFL’s) are incorporated into the catheter which enabled the cuffs to 

inflate and deflate accordingly and for guiding and aligning the implant within the annulus.  

 

Temporary placement studies of the DFM valve by Low et al. noted that the 14 mm height of 

the PHV was too short to accommodate the cusps of the native valve which led to a high 

transvalvular pressure gradient post implantation.
51

 This led to a design modification to 

increase the height to 16 mm and 17 mm in the 23 mm and 25 mm valves respectively, 

without compromising the coronary ostia. Overall, there was a drop in transvalvular gradient 

from a mean pressure of 87.6 mmHg pre-implantation to 17.9 mmHg post-implantation and 

no aortic insufficiency was evident in 7 of the patients, demonstrating excellent 

hemodynamics of the valve. 



 

In an another study in 16 AS patients deemed too high risk for surgery, there were 

improvements in mean transvalvular gradient from 50.1 mmHg to 19.6 mmHg after 30 days. 

Additionally, the aortic valve area increased from a baseline value of 0.57 cm
2
 to 1.47 cm

2
 

Survival rates with the DFM valve after 1 and 2 years were 81% and 69% respectively.
52

  

 

Valve-in-valve procedures 

 

In 2005, a CoreValve prosthesis which was implanted in a 58 year old woman was 

incorrectly placed in a sub-annular position leading to severe AR through the stent struts and 

impingement of the anterior leaflet of the mitral valve. Due to the patient’s refusal to undergo 

surgery, another CoreValve was deployed over the first valve in the correct position. A 3 year 

follow-up showed a reduction in a NYHA functional class of IV to II. This case was the first 

to report the feasibility of a valve-in-valve procedure. Following this, cases in patients with 

degenerated bio-prosthetic valves receiving a percutaneous valve have been reported.
53, 54

 

The ability to implant a valve over an existing prosthesis creates an opportunity for patients 

undergoing a re-replacement with a bio-prosthetic valve to be enrolled for a PHV case.
55

 

Valve -in-valve procedures have also found an advantage in reducing paravalvular 

regurgitation due to PPM or incorrect placement of the initial PHV.
56

 Additionally this 

technique would be most beneficial in younger patients who would have otherwise required 

repeat surgical AVR procedures in their lifetime. However, repeated valve-in-valve 

procedures should be limited as they may affect the hemodynamics such as by decreasing the 

EOA or increasing the TVG. 

 

 

Results from the PARTNER trial 

 

In 2007, Edwards Lifesciences enrolled patients in the PARTNER (Placement of Aortic 

Transcatheter Valves) trial to investigate the effectiveness and safety of TAVR using the 

Edwards SAPIEN valve. Cohort A involved 699 AS patients who were considered surgical 

candidates for valve replacement. They were randomly assigned to undergo either the TAVR 

with the Edwards SAPIEN valve or surgical AVR.
57

 Of those that underwent TAVR, the 

patients were divided into having either a TF- or TA-AVR procedure depending on whether 

they could accommodate the 22 Fr or 24 Fr sheaths. Cohort B consisted of 358 AS patients 

who were considered unsuitable for surgery and were randomised into either having TAVR 

or non-surgical treatment.
58

 Of those who underwent therapy; 68% had balloon valvuloplasty, 

6.7% underwent surgical AVR, 2.8% had an apicoaortic conduit fitted as well as AVR and 

2.2% underwent TAVR outside the United States at a non-participating site. 

 

There was no significant difference in the mortality rate between the TAVR group and the 

surgical group after 30 days and one year and this difference remained insignificant after two 



years at 33.9% compared to 35% respectively. Additionally, the rates of stroke or transient 

ischemic attacks after two years were higher in the TAVR group at 11.2% compared to 6.5% 

in the surgical group although this difference was not statistically significant. TAVR however 

had significantly (p<0.001) higher rates of major vascular complications (11.6% vs. 3.8%) 

whereas AVR had a significantly (p=0.002) higher incidence of major bleeding (29.5% vs. 

19.0%).
41, 59

 

 

In the Cohort B study, the rates of mortality from any cause after one and two years 

respectively were 30.7% and 43.3% in the TAVR group compared to 50.7% and 68.0% in the 

non-surgical group. The rate of stroke remained significantly (p=0.01) higher after two years 

in the TAVR group at 13.8% compared to 5.5% in the non surgical group. However, patient 

rehospitalisation after two years was significantly higher (p<0.001) in the non-surgical group 

at 72.5% compared to 35% in the TAVR group.
58, 60

 

 

The major vascular complications reported with the use of the valves may be a result of the 

large femoral (24 Fr) sheaths that are used to access the femoral arteries. These results 

indicate the need for a reduced delivery profile and support frame which will enable patients 

with smaller illiofemoral arteries to benefit from a TAVR procedure.
58

 MRI studies have 

indicated cerebral embolism likely due to dislodged calcific debris from the aortic valve in 

many TAVR patients which may be the cause for the higher incidence of stroke.
61

 Other 

causes of stroke may be due to hypotension from RVP or hemodynamic instability during the 

procedure.
62

 

 

Cao et al. conducted a meta-analysis from 14 studies of the differences between transcatheter 

aortic valve implantation and aortic valve replacement for severe aortic stenosis in high risk 

but operable patients. Three of the studies reported outcomes from two randomized 

controlled trials (Cohort A of the PARTNER trial) and the remaining 11 were observational 

studies. The results indicated no significant differences between TAVR and AVR in stroke, 

all-cause mortality and cardio-vascular caused mortality during the peri-procedural period, at 

12 months and beyond 12 months. However, in a subgroup analysis of the two randomized 

controlled trials, TAVR had a significantly higher incidence of stroke and transient ischemic 

attacks. In other peri-procedural outcomes from the meta-analysis, TAVR had a significantly 

higher incidence of vascular complications and permanent pacemaker insertion and a 

significantly lower incidence of major bleeding compared to AVR. Severe or moderate 

paravalvular and transvalvular regurgitation was also significantly higher in TAVR patients 

compared to AVR. The authors highlighted the challenge faced in comparing TAVR to AVR 

due to different inclusion and exclusion criteria and suggest future studies should adhere to 

the Valve Academic Research Consortium (VARC) standardized endpoint definitions.
63

  

 

 

Complications 

 



There are several challenges still to overcome with a TAVR procedure. The rate of stroke 

following TAVR has been relatively high (3-9%) and AV-Block is also commonly reported 

in 4-8% of cases.
64

 A higher incidence of new pacemakers fitted is reported with the 

CoreValve prosthesis due to the close proximity of the prosthesis to the AV conduction 

bundles.
65-67

 Major vascular complications are still commonly reported, having an incidence 

rate of 10-15% with the retrograde TAVR cases which, is largely due to the size of the 

introducer sheaths. In a patient population study by Toggweiler et al., arterial diameters 

which were smaller than the external sheath diameter were found to increase the chances of 

vascular complications and unplanned surgery.
68

 The study also found that when smaller 18 - 

19 F sheaths were used, the prevalence of vascular complications decreased from 32% to 9%. 

The complications also decreased as a result of improved valvular closure techniques and 

percutaneous management. It is clearly evident that a reduced profile is necessary to 

overcome the vascular complications commonly reported. Furthermore, a reduced profile 

would increase the flexibility of the delivery system which would improve angular movement 

within the aortic root and LVOT.  

 

As the percutaneous valve is designed to be deployed over the calcified native valve, there is 

a real risk of emboli from the friable valve, which could cause coronary occlusion or stroke. 

A high incidence of this is reported in the CoreValve prosthesis which may be due to the 

incomplete entrapment of the friable native leaflets in the narrowed portion of the stent. 

Percutaneous embolic protection devices to capture loose emboli have been developed and 

their use could reduce incidence of stroke. It is also worth noting that the calcified leaflets are 

pushed away from the flow boundary and as such the calcium may begin to be reabsorbed 

due to a lack of shear stress.
41

 In such an event, implant loosening or migration may occur. 

This would be more problematic with balloon expandable valves than self-expanding valves. 

RVP is necessary in FT-AVR using balloon devices to prevent migration of the balloon with 

pulsatile blood flow. However their use can lead to disturbances in hemodynamics which can 

lead to other complications. Grube et al. carried out a pivotal study which involved 

implanting the CoreValve prosthesis without balloon pre-dilation, thereby eliminating the 

need for RVP altogether.
69

 Although post-dilation was required in 10 of the 60 patients, their 

study demonstrated the feasibility and safety of not pre-dilating self-expanding valves and 

may simplify future TAVR procedures. TAVR generally remains unsuitable for patients with 

aortic regurgitation, particularly in cases where comorbidities such as aortic dilation and 

dissection exist. The exception to this is the second generation JenaValve which received CE 

Mark approval in 2013 for treatment of aortic insufficiency, having been approved in 2011 

for transapical delivery for the treatment of aortic stenosis. The success of this technology is 

attributed to the valves clip mechanism which allows fixation on the native leaflets in the 

absence of calcification.
70, 71

  

 

Paravalvular, intra-prosthetic or combined regurgitation is relatively high with TAVR which 

may be caused by PPM, incomplete expansion, incorrect site of implantation, a bicuspid 

valve or due to asymmetric calcification of the cusps.
56

 Several studies have found moderate 

to severe paravalvular leakage to correlate with late mortality.
59, 72, 73

 In a study by Sinning et 

al., an aortic regurgitation index less than 25 (calculated as the ratio of the gradient between 

the diastolic blood pressure and left ventricular end diastolic pressure to systolic pressure) 

significantly increased 1 year mortality risk following TAVI compared to patients with an 



index ≥25.
74

 Oversizing the prosthesis immediately after receiving TAVI has been shown to 

reduce paravalvular leakage and eliminate it in 52% of cases.
75

 However, over-dilation 

should be used judiciously as it can lead to annular rupture or cerebrovascular events.
76, 77

 

Overcoming these limitations would require the use of more accurate three-dimensional 

imaging methods such as computed tomography taken pre- and during procedures as well at 

follow-ups. 

 

  

Future TAVR 

 

Ten years experience have demonstrated the feasibility of a transcatheter aortic valve 

replacement in patients whose chance of survival following diagnosis of severe AS was poor 

without surgical replacement. The procedure has also opened up an array of other 

opportunities such as the possibility of carrying out a simultaneous percutaneous repair on 

mitral regurgitation or a coronary stent procedure with TAVR. The research in this field has 

also produced newer adjunct percutaneous products such as cerebral protection and sutureless 

transapical closure devices. Moreover, better use of imaging techniques would help reduce 

the incidence of patient-prosthesis mismatch (PPM) which may occur due to an incorrect 

determination of the annulus area. In addition to this, a better scoring system needs to be 

established that would avoid over-predicting mortality and the EuroSCORE II aims to 

address this.
78

 The future of TAVR may be particularly prominent in valve-in-valve 

procedures for older patients with a degenerated prosthesis but who may no longer be suitable 

for a repeat surgery.  

 

Percutaneous hearts valves provide a promising alternative solution to valvular replacement 

in patients with severe AS who cannot undergo conventional surgery. Some of the 

complications of the earlier valves such as coronary ostia occlusion, paravalvular leaking and 

stent migration have been addressed in the next generation heart valves. However the later 

valve designs still have some way to go in developing a valve which will be able to survive 

long term implantation. The latest generation valves are still too large in patients with 

iliofemoral complications or those with smaller arteries, such as it is with children. It is 

envisaged that with the increased learning curve, improved materials leading to a reduction in 

stent and leaflet dimensions and smaller delivery catheters with greater flexibility can 

significantly reduce the incidence of stroke and vascular complications. 
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