Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Shakedown analysis for complex loading using superposition

Muscat, Martin and Hamilton, R. and Boyle, J.T. (2002) Shakedown analysis for complex loading using superposition. Journal of Strain Analysis for Engineering Design, 37 (5). pp. 399-412. ISSN 0309-3247

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Bounding techniques for calculating shakedown loads are of great importance as design criteria since these eliminate the need for performing full cyclic loading programs either numerically or experimentally. The classical Melan theorem provides a way to recognize whether or not elastic shakedown occurs under a specified loading. Polizzotto extended Melan's theorem to the case where a combination of steady and cyclic loads are acting on the structure. The purpose of this paper is to present a finite element method, based on Polizzotto's theorem, to estimate elastic shakedown for a structure subjected to loads resulting from a combination of steady and cyclic mechanical loads. This method, called non-linear superposition, is then applied to investigate the shakedown behaviour of a biaxially loaded square plate with a central hole. Results obtained for the plate with a hole problem are compared with those available in the literature and are verified by means of cyclic elastoplastic finite element analysis.